Tests of Predictability in Cryptocurrency Markets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/161114 |
Resumo: | Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
id |
RCAP_bc53efb209d4506318b7a0fead8c6960 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/161114 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Tests of Predictability in Cryptocurrency MarketsCryptocurrencyPrice VolatilityLSTMFinancial Market PredictionDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and ManagementThe cryptocurrency market has grabbed the curiosity of both seasoned and novice investors as a developing and increasingly popular financial arena. This rise in attention warrants a closer look at Bitcoin pricing trends and the market's potential predictability. To solve the core research topic, a deductive technique was used in response to these study aims. To help this analysis, the researcher used Long Short-Term Memory (LSTM) networks, a type of recurrent neural network known for its ability to capture order dependencies within sequential data. The study's findings highlight the capacity of LSTM networks to deliver cryptocurrency price forecasts, putting light on the promising potential of LSTM in cryptocurrency market analysis. This study goes beyond standard ways to investigate cryptocurrency market prediction, using data from 2015 to 2023. The data scope, together with the use of LSTM and GRU models, adds to a more comprehensive and accurate analysis, meeting the need for a more in-depth understanding of Bitcoin market dynamics.Damásio, Bruno Miguel PintoRUNRubio, Isabella Regina da Silva2023-12-12T14:10:00Z2023-10-262023-10-26T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/161114TID:203418719enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:54Zoai:run.unl.pt:10362/161114Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:20.547467Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Tests of Predictability in Cryptocurrency Markets |
title |
Tests of Predictability in Cryptocurrency Markets |
spellingShingle |
Tests of Predictability in Cryptocurrency Markets Rubio, Isabella Regina da Silva Cryptocurrency Price Volatility LSTM Financial Market Prediction Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Tests of Predictability in Cryptocurrency Markets |
title_full |
Tests of Predictability in Cryptocurrency Markets |
title_fullStr |
Tests of Predictability in Cryptocurrency Markets |
title_full_unstemmed |
Tests of Predictability in Cryptocurrency Markets |
title_sort |
Tests of Predictability in Cryptocurrency Markets |
author |
Rubio, Isabella Regina da Silva |
author_facet |
Rubio, Isabella Regina da Silva |
author_role |
author |
dc.contributor.none.fl_str_mv |
Damásio, Bruno Miguel Pinto RUN |
dc.contributor.author.fl_str_mv |
Rubio, Isabella Regina da Silva |
dc.subject.por.fl_str_mv |
Cryptocurrency Price Volatility LSTM Financial Market Prediction Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
Cryptocurrency Price Volatility LSTM Financial Market Prediction Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation presented as the partial requirement for obtaining a Master's degree in Statistics and Information Management, specialization in Risk Analysis and Management |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-12T14:10:00Z 2023-10-26 2023-10-26T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/161114 TID:203418719 |
url |
http://hdl.handle.net/10362/161114 |
identifier_str_mv |
TID:203418719 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138164595490816 |