Semigroups of partial transformations with kernel and image restricted by an equivalence
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/101775 |
Resumo: | For an arbitrary set X and an equivalence relation μ on X, denote by Pμ(X) the semigroup of partial transformations α on X such that xμ⊆x(ker(α)) for every x∈dom(α), and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup G=GK of Pμ(X). We study subsemigroups ⟨G,U⟩ of Pμ(X) generated by G∪U, where U is any set of elements of Pμ(X) of rank less than |X/μ|. We show that each ⟨G,U⟩ is a regular semigroup, describe Green’s relations and ideals in ⟨G,U⟩, and determine when ⟨G,U⟩ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top J-class J of Pμ(X) is a right group. We find formulas for the ranks of the semigroups J, G∪I, J∪I, and I, where I is any proper ideal of Pμ(X). |
id |
RCAP_bd160b69382a4f38a00f0bb273e4c3a7 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/101775 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Semigroups of partial transformations with kernel and image restricted by an equivalencePartial transformation semigroupsEquivalence relationsGreen’s relationsRegular semigroupsIdealsRankFor an arbitrary set X and an equivalence relation μ on X, denote by Pμ(X) the semigroup of partial transformations α on X such that xμ⊆x(ker(α)) for every x∈dom(α), and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup G=GK of Pμ(X). We study subsemigroups ⟨G,U⟩ of Pμ(X) generated by G∪U, where U is any set of elements of Pμ(X) of rank less than |X/μ|. We show that each ⟨G,U⟩ is a regular semigroup, describe Green’s relations and ideals in ⟨G,U⟩, and determine when ⟨G,U⟩ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top J-class J of Pμ(X) is a right group. We find formulas for the ranks of the semigroups J, G∪I, J∪I, and I, where I is any proper ideal of Pμ(X).DM - Departamento de MatemáticaCMA - Centro de Matemática e AplicaçõesRUNAndré, Jorge M.Konieczny, Janusz2023-11-17T01:31:53Z2020-07-032020-07-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/101775eng0037-1912PURE: 18893460https://doi.org/10.1007/s00233-020-10116-3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:48:05Zoai:run.unl.pt:10362/101775Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:41.176987Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
title |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
spellingShingle |
Semigroups of partial transformations with kernel and image restricted by an equivalence André, Jorge M. Partial transformation semigroups Equivalence relations Green’s relations Regular semigroups Ideals Rank |
title_short |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
title_full |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
title_fullStr |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
title_full_unstemmed |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
title_sort |
Semigroups of partial transformations with kernel and image restricted by an equivalence |
author |
André, Jorge M. |
author_facet |
André, Jorge M. Konieczny, Janusz |
author_role |
author |
author2 |
Konieczny, Janusz |
author2_role |
author |
dc.contributor.none.fl_str_mv |
DM - Departamento de Matemática CMA - Centro de Matemática e Aplicações RUN |
dc.contributor.author.fl_str_mv |
André, Jorge M. Konieczny, Janusz |
dc.subject.por.fl_str_mv |
Partial transformation semigroups Equivalence relations Green’s relations Regular semigroups Ideals Rank |
topic |
Partial transformation semigroups Equivalence relations Green’s relations Regular semigroups Ideals Rank |
description |
For an arbitrary set X and an equivalence relation μ on X, denote by Pμ(X) the semigroup of partial transformations α on X such that xμ⊆x(ker(α)) for every x∈dom(α), and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup G=GK of Pμ(X). We study subsemigroups ⟨G,U⟩ of Pμ(X) generated by G∪U, where U is any set of elements of Pμ(X) of rank less than |X/μ|. We show that each ⟨G,U⟩ is a regular semigroup, describe Green’s relations and ideals in ⟨G,U⟩, and determine when ⟨G,U⟩ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top J-class J of Pμ(X) is a right group. We find formulas for the ranks of the semigroups J, G∪I, J∪I, and I, where I is any proper ideal of Pμ(X). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07-03 2020-07-03T00:00:00Z 2023-11-17T01:31:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/101775 |
url |
http://hdl.handle.net/10362/101775 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0037-1912 PURE: 18893460 https://doi.org/10.1007/s00233-020-10116-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138013584818176 |