Semigroups of partial transformations with kernel and image restricted by an equivalence

Detalhes bibliográficos
Autor(a) principal: André, Jorge M.
Data de Publicação: 2020
Outros Autores: Konieczny, Janusz
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/101775
Resumo: For an arbitrary set X and an equivalence relation μ on X, denote by Pμ(X) the semigroup of partial transformations α on X such that xμ⊆x(ker(α)) for every x∈dom(α), and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup G=GK of Pμ(X). We study subsemigroups ⟨G,U⟩ of Pμ(X) generated by G∪U, where U is any set of elements of Pμ(X) of rank less than |X/μ|. We show that each ⟨G,U⟩ is a regular semigroup, describe Green’s relations and ideals in ⟨G,U⟩, and determine when ⟨G,U⟩ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top J-class J of Pμ(X) is a right group. We find formulas for the ranks of the semigroups J, G∪I, J∪I, and I, where I is any proper ideal of Pμ(X).
id RCAP_bd160b69382a4f38a00f0bb273e4c3a7
oai_identifier_str oai:run.unl.pt:10362/101775
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Semigroups of partial transformations with kernel and image restricted by an equivalencePartial transformation semigroupsEquivalence relationsGreen’s relationsRegular semigroupsIdealsRankFor an arbitrary set X and an equivalence relation μ on X, denote by Pμ(X) the semigroup of partial transformations α on X such that xμ⊆x(ker(α)) for every x∈dom(α), and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup G=GK of Pμ(X). We study subsemigroups ⟨G,U⟩ of Pμ(X) generated by G∪U, where U is any set of elements of Pμ(X) of rank less than |X/μ|. We show that each ⟨G,U⟩ is a regular semigroup, describe Green’s relations and ideals in ⟨G,U⟩, and determine when ⟨G,U⟩ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top J-class J of Pμ(X) is a right group. We find formulas for the ranks of the semigroups J, G∪I, J∪I, and I, where I is any proper ideal of Pμ(X).DM - Departamento de MatemáticaCMA - Centro de Matemática e AplicaçõesRUNAndré, Jorge M.Konieczny, Janusz2023-11-17T01:31:53Z2020-07-032020-07-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/101775eng0037-1912PURE: 18893460https://doi.org/10.1007/s00233-020-10116-3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:48:05Zoai:run.unl.pt:10362/101775Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:41.176987Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Semigroups of partial transformations with kernel and image restricted by an equivalence
title Semigroups of partial transformations with kernel and image restricted by an equivalence
spellingShingle Semigroups of partial transformations with kernel and image restricted by an equivalence
André, Jorge M.
Partial transformation semigroups
Equivalence relations
Green’s relations
Regular semigroups
Ideals
Rank
title_short Semigroups of partial transformations with kernel and image restricted by an equivalence
title_full Semigroups of partial transformations with kernel and image restricted by an equivalence
title_fullStr Semigroups of partial transformations with kernel and image restricted by an equivalence
title_full_unstemmed Semigroups of partial transformations with kernel and image restricted by an equivalence
title_sort Semigroups of partial transformations with kernel and image restricted by an equivalence
author André, Jorge M.
author_facet André, Jorge M.
Konieczny, Janusz
author_role author
author2 Konieczny, Janusz
author2_role author
dc.contributor.none.fl_str_mv DM - Departamento de Matemática
CMA - Centro de Matemática e Aplicações
RUN
dc.contributor.author.fl_str_mv André, Jorge M.
Konieczny, Janusz
dc.subject.por.fl_str_mv Partial transformation semigroups
Equivalence relations
Green’s relations
Regular semigroups
Ideals
Rank
topic Partial transformation semigroups
Equivalence relations
Green’s relations
Regular semigroups
Ideals
Rank
description For an arbitrary set X and an equivalence relation μ on X, denote by Pμ(X) the semigroup of partial transformations α on X such that xμ⊆x(ker(α)) for every x∈dom(α), and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup G=GK of Pμ(X). We study subsemigroups ⟨G,U⟩ of Pμ(X) generated by G∪U, where U is any set of elements of Pμ(X) of rank less than |X/μ|. We show that each ⟨G,U⟩ is a regular semigroup, describe Green’s relations and ideals in ⟨G,U⟩, and determine when ⟨G,U⟩ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top J-class J of Pμ(X) is a right group. We find formulas for the ranks of the semigroups J, G∪I, J∪I, and I, where I is any proper ideal of Pμ(X).
publishDate 2020
dc.date.none.fl_str_mv 2020-07-03
2020-07-03T00:00:00Z
2023-11-17T01:31:53Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/101775
url http://hdl.handle.net/10362/101775
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0037-1912
PURE: 18893460
https://doi.org/10.1007/s00233-020-10116-3
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138013584818176