A nanocommunication system for endocrine diseases
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/50530 |
Resumo: | Nanotechnology is a newand very promising area of research which will allow several new applications to be created in different fields, such as, biological, medical, environmental, military, agricultural, industrial and consumer goods. This paper focuses specifically on nanocommunications, which will allow interconnected devices, at the nano-scale, to achieve collaborative tasks, greatly changing the paradigm in the fields described. Molecular communication is a new communication paradigm which allows nanomachines to exchange information using molecules as carrier. This is the most promising nanocommunication method within nanonetworks, since it can use bio-inspired techniques, inherit from studied biological systems, which makes the connection of biologic and man-made systems a easier process. At this point, the biggest challenges in these type of nanocommunication are to establish feasible and reliable techniques that will allow information to be encoded, and mechanisms that ensure a molecular communication between different nodes. This paper focus on creating concepts and techniques to tackle these challenges, and establishing new foundations on which future work can be developed. The created concepts and techniques are then applied in an envisioned medical application, which is based on a molecular nanonetwork deployed inside the Human body. The goal of this medical application is to automatously monitor endocrine diseases using the benefits of nanonetworks, which in turn connects with the internet, thus creating a Internet of NanoThings system. The concepts and techniques developed are evaluated by performing several simulations and comparing with other researches, and the results and discussions are presented on the later sections of this paper. |
id |
RCAP_bd33ae7060ff9225b144c1a9ac61e867 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/50530 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A nanocommunication system for endocrine diseasesMolecularNanocommunicationNanonetworkNanomedicineAddressingRoutingScience & TechnologyNanotechnology is a newand very promising area of research which will allow several new applications to be created in different fields, such as, biological, medical, environmental, military, agricultural, industrial and consumer goods. This paper focuses specifically on nanocommunications, which will allow interconnected devices, at the nano-scale, to achieve collaborative tasks, greatly changing the paradigm in the fields described. Molecular communication is a new communication paradigm which allows nanomachines to exchange information using molecules as carrier. This is the most promising nanocommunication method within nanonetworks, since it can use bio-inspired techniques, inherit from studied biological systems, which makes the connection of biologic and man-made systems a easier process. At this point, the biggest challenges in these type of nanocommunication are to establish feasible and reliable techniques that will allow information to be encoded, and mechanisms that ensure a molecular communication between different nodes. This paper focus on creating concepts and techniques to tackle these challenges, and establishing new foundations on which future work can be developed. The created concepts and techniques are then applied in an envisioned medical application, which is based on a molecular nanonetwork deployed inside the Human body. The goal of this medical application is to automatously monitor endocrine diseases using the benefits of nanonetworks, which in turn connects with the internet, thus creating a Internet of NanoThings system. The concepts and techniques developed are evaluated by performing several simulations and comparing with other researches, and the results and discussions are presented on the later sections of this paper.Springer Science+Business MediaUniversidade do MinhoFerreira, Diogo CaldeiraReis, L. P.Lopes, Nuno Vasco2017-022017-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/50530eng1386-785710.1007/s10586-017-0761-3info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:48:50Zoai:repositorium.sdum.uminho.pt:1822/50530Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:47:11.100024Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A nanocommunication system for endocrine diseases |
title |
A nanocommunication system for endocrine diseases |
spellingShingle |
A nanocommunication system for endocrine diseases Ferreira, Diogo Caldeira Molecular Nanocommunication Nanonetwork Nanomedicine Addressing Routing Science & Technology |
title_short |
A nanocommunication system for endocrine diseases |
title_full |
A nanocommunication system for endocrine diseases |
title_fullStr |
A nanocommunication system for endocrine diseases |
title_full_unstemmed |
A nanocommunication system for endocrine diseases |
title_sort |
A nanocommunication system for endocrine diseases |
author |
Ferreira, Diogo Caldeira |
author_facet |
Ferreira, Diogo Caldeira Reis, L. P. Lopes, Nuno Vasco |
author_role |
author |
author2 |
Reis, L. P. Lopes, Nuno Vasco |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Diogo Caldeira Reis, L. P. Lopes, Nuno Vasco |
dc.subject.por.fl_str_mv |
Molecular Nanocommunication Nanonetwork Nanomedicine Addressing Routing Science & Technology |
topic |
Molecular Nanocommunication Nanonetwork Nanomedicine Addressing Routing Science & Technology |
description |
Nanotechnology is a newand very promising area of research which will allow several new applications to be created in different fields, such as, biological, medical, environmental, military, agricultural, industrial and consumer goods. This paper focuses specifically on nanocommunications, which will allow interconnected devices, at the nano-scale, to achieve collaborative tasks, greatly changing the paradigm in the fields described. Molecular communication is a new communication paradigm which allows nanomachines to exchange information using molecules as carrier. This is the most promising nanocommunication method within nanonetworks, since it can use bio-inspired techniques, inherit from studied biological systems, which makes the connection of biologic and man-made systems a easier process. At this point, the biggest challenges in these type of nanocommunication are to establish feasible and reliable techniques that will allow information to be encoded, and mechanisms that ensure a molecular communication between different nodes. This paper focus on creating concepts and techniques to tackle these challenges, and establishing new foundations on which future work can be developed. The created concepts and techniques are then applied in an envisioned medical application, which is based on a molecular nanonetwork deployed inside the Human body. The goal of this medical application is to automatously monitor endocrine diseases using the benefits of nanonetworks, which in turn connects with the internet, thus creating a Internet of NanoThings system. The concepts and techniques developed are evaluated by performing several simulations and comparing with other researches, and the results and discussions are presented on the later sections of this paper. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-02 2017-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/50530 |
url |
https://hdl.handle.net/1822/50530 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1386-7857 10.1007/s10586-017-0761-3 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Science+Business Media |
publisher.none.fl_str_mv |
Springer Science+Business Media |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133044569800704 |