Child’s target height prediction evolution

Detalhes bibliográficos
Autor(a) principal: Cordeiro, J.
Data de Publicação: 2019
Outros Autores: Postolache, O., Ferreira, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/20168
Resumo: This study is a contribution for the improvement of healthcare in children and in society generally. Thisstudyaimstopredictchildren’sheightwhentheybecomeadults,also known as“target height”, to allow for a better growth assessment and more personalized healthcare. The existing literature describes some existing prediction methods, based on longitudinal population studies and statistical techniques, which with few information resources, are able to produce acceptable results. The challenge of this study is in using a new approach based on machine learning to forecast the target height for children and (eventually) improve the existing height prediction accuracy. The goals of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient boosting machine regression (LightGBM) algorithms achieved considerably better results on the height prediction. The developed model can be usefully applied by paediatricians and other clinical professionals in growth assessment.
id RCAP_bdd254e0929a7ce3c159984f7d4df58b
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/20168
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Child’s target height prediction evolutionChild height predictionGrowth assessmentData miningXGB-Extreme Gradient Boosting RegressionLGBM- Light Gradient Boosting Machine RegressionChild perzonalied medicineThis study is a contribution for the improvement of healthcare in children and in society generally. Thisstudyaimstopredictchildren’sheightwhentheybecomeadults,also known as“target height”, to allow for a better growth assessment and more personalized healthcare. The existing literature describes some existing prediction methods, based on longitudinal population studies and statistical techniques, which with few information resources, are able to produce acceptable results. The challenge of this study is in using a new approach based on machine learning to forecast the target height for children and (eventually) improve the existing height prediction accuracy. The goals of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient boosting machine regression (LightGBM) algorithms achieved considerably better results on the height prediction. The developed model can be usefully applied by paediatricians and other clinical professionals in growth assessment.MDPI AG2020-03-23T16:22:28Z2019-01-01T00:00:00Z20192020-03-23T16:21:15Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10071/20168eng2076-341710.3390/app9245447Cordeiro, J.Postolache, O.Ferreira, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:35:41Zoai:repositorio.iscte-iul.pt:10071/20168Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:35:41Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Child’s target height prediction evolution
title Child’s target height prediction evolution
spellingShingle Child’s target height prediction evolution
Cordeiro, J.
Child height prediction
Growth assessment
Data mining
XGB-Extreme Gradient Boosting Regression
LGBM- Light Gradient Boosting Machine Regression
Child perzonalied medicine
title_short Child’s target height prediction evolution
title_full Child’s target height prediction evolution
title_fullStr Child’s target height prediction evolution
title_full_unstemmed Child’s target height prediction evolution
title_sort Child’s target height prediction evolution
author Cordeiro, J.
author_facet Cordeiro, J.
Postolache, O.
Ferreira, J.
author_role author
author2 Postolache, O.
Ferreira, J.
author2_role author
author
dc.contributor.author.fl_str_mv Cordeiro, J.
Postolache, O.
Ferreira, J.
dc.subject.por.fl_str_mv Child height prediction
Growth assessment
Data mining
XGB-Extreme Gradient Boosting Regression
LGBM- Light Gradient Boosting Machine Regression
Child perzonalied medicine
topic Child height prediction
Growth assessment
Data mining
XGB-Extreme Gradient Boosting Regression
LGBM- Light Gradient Boosting Machine Regression
Child perzonalied medicine
description This study is a contribution for the improvement of healthcare in children and in society generally. Thisstudyaimstopredictchildren’sheightwhentheybecomeadults,also known as“target height”, to allow for a better growth assessment and more personalized healthcare. The existing literature describes some existing prediction methods, based on longitudinal population studies and statistical techniques, which with few information resources, are able to produce acceptable results. The challenge of this study is in using a new approach based on machine learning to forecast the target height for children and (eventually) improve the existing height prediction accuracy. The goals of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient boosting machine regression (LightGBM) algorithms achieved considerably better results on the height prediction. The developed model can be usefully applied by paediatricians and other clinical professionals in growth assessment.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01T00:00:00Z
2019
2020-03-23T16:22:28Z
2020-03-23T16:21:15Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/20168
url http://hdl.handle.net/10071/20168
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2076-3417
10.3390/app9245447
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI AG
publisher.none.fl_str_mv MDPI AG
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817546512455958528