Child’s target height prediction evolution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/20168 |
Resumo: | This study is a contribution for the improvement of healthcare in children and in society generally. Thisstudyaimstopredictchildren’sheightwhentheybecomeadults,also known as“target height”, to allow for a better growth assessment and more personalized healthcare. The existing literature describes some existing prediction methods, based on longitudinal population studies and statistical techniques, which with few information resources, are able to produce acceptable results. The challenge of this study is in using a new approach based on machine learning to forecast the target height for children and (eventually) improve the existing height prediction accuracy. The goals of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient boosting machine regression (LightGBM) algorithms achieved considerably better results on the height prediction. The developed model can be usefully applied by paediatricians and other clinical professionals in growth assessment. |
id |
RCAP_bdd254e0929a7ce3c159984f7d4df58b |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/20168 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Child’s target height prediction evolutionChild height predictionGrowth assessmentData miningXGB-Extreme Gradient Boosting RegressionLGBM- Light Gradient Boosting Machine RegressionChild perzonalied medicineThis study is a contribution for the improvement of healthcare in children and in society generally. Thisstudyaimstopredictchildren’sheightwhentheybecomeadults,also known as“target height”, to allow for a better growth assessment and more personalized healthcare. The existing literature describes some existing prediction methods, based on longitudinal population studies and statistical techniques, which with few information resources, are able to produce acceptable results. The challenge of this study is in using a new approach based on machine learning to forecast the target height for children and (eventually) improve the existing height prediction accuracy. The goals of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient boosting machine regression (LightGBM) algorithms achieved considerably better results on the height prediction. The developed model can be usefully applied by paediatricians and other clinical professionals in growth assessment.MDPI AG2020-03-23T16:22:28Z2019-01-01T00:00:00Z20192020-03-23T16:21:15Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10071/20168eng2076-341710.3390/app9245447Cordeiro, J.Postolache, O.Ferreira, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-07-07T03:35:41Zoai:repositorio.iscte-iul.pt:10071/20168Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-07-07T03:35:41Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Child’s target height prediction evolution |
title |
Child’s target height prediction evolution |
spellingShingle |
Child’s target height prediction evolution Cordeiro, J. Child height prediction Growth assessment Data mining XGB-Extreme Gradient Boosting Regression LGBM- Light Gradient Boosting Machine Regression Child perzonalied medicine |
title_short |
Child’s target height prediction evolution |
title_full |
Child’s target height prediction evolution |
title_fullStr |
Child’s target height prediction evolution |
title_full_unstemmed |
Child’s target height prediction evolution |
title_sort |
Child’s target height prediction evolution |
author |
Cordeiro, J. |
author_facet |
Cordeiro, J. Postolache, O. Ferreira, J. |
author_role |
author |
author2 |
Postolache, O. Ferreira, J. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Cordeiro, J. Postolache, O. Ferreira, J. |
dc.subject.por.fl_str_mv |
Child height prediction Growth assessment Data mining XGB-Extreme Gradient Boosting Regression LGBM- Light Gradient Boosting Machine Regression Child perzonalied medicine |
topic |
Child height prediction Growth assessment Data mining XGB-Extreme Gradient Boosting Regression LGBM- Light Gradient Boosting Machine Regression Child perzonalied medicine |
description |
This study is a contribution for the improvement of healthcare in children and in society generally. Thisstudyaimstopredictchildren’sheightwhentheybecomeadults,also known as“target height”, to allow for a better growth assessment and more personalized healthcare. The existing literature describes some existing prediction methods, based on longitudinal population studies and statistical techniques, which with few information resources, are able to produce acceptable results. The challenge of this study is in using a new approach based on machine learning to forecast the target height for children and (eventually) improve the existing height prediction accuracy. The goals of the study were achieved. The extreme gradient boosting regression (XGB) and light gradient boosting machine regression (LightGBM) algorithms achieved considerably better results on the height prediction. The developed model can be usefully applied by paediatricians and other clinical professionals in growth assessment. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01T00:00:00Z 2019 2020-03-23T16:22:28Z 2020-03-23T16:21:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/20168 |
url |
http://hdl.handle.net/10071/20168 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2076-3417 10.3390/app9245447 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817546512455958528 |