On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion

Detalhes bibliográficos
Autor(a) principal: Costa, J. L.
Data de Publicação: 2014
Outros Autores: Girão, P. M., Natário, J., Silva, J. S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/8179
Resumo: This paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a 'suitably regular' Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of a maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series (Costa et al 2014, arXiv:1406.7253) we study the stability of the radius function at the Cauchy horizon. In the third and final paper (Costa et al 2014,arXiv:1406.7261) we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations.
id RCAP_be2ef33291307b8f4111759f2844b404
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/8179
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterionEinstein equationsBlack holesStrong cosmic censorshipCauchy horizonScalar fieldSpherical symmetryThis paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a 'suitably regular' Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of a maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series (Costa et al 2014, arXiv:1406.7253) we study the stability of the radius function at the Cauchy horizon. In the third and final paper (Costa et al 2014,arXiv:1406.7261) we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations.IOP Publishing2014-12-17T14:37:22Z2015-01-01T00:00:00Z20152019-05-02T10:25:58Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/8179eng0264-938110.1088/0264-9381/32/1/015017Costa, J. L.Girão, P. M.Natário, J.Silva, J. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:28:59Zoai:repositorio.iscte-iul.pt:10071/8179Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:58.592823Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
title On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
spellingShingle On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
Costa, J. L.
Einstein equations
Black holes
Strong cosmic censorship
Cauchy horizon
Scalar field
Spherical symmetry
title_short On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
title_full On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
title_fullStr On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
title_full_unstemmed On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
title_sort On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
author Costa, J. L.
author_facet Costa, J. L.
Girão, P. M.
Natário, J.
Silva, J. S.
author_role author
author2 Girão, P. M.
Natário, J.
Silva, J. S.
author2_role author
author
author
dc.contributor.author.fl_str_mv Costa, J. L.
Girão, P. M.
Natário, J.
Silva, J. S.
dc.subject.por.fl_str_mv Einstein equations
Black holes
Strong cosmic censorship
Cauchy horizon
Scalar field
Spherical symmetry
topic Einstein equations
Black holes
Strong cosmic censorship
Cauchy horizon
Scalar field
Spherical symmetry
description This paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a 'suitably regular' Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of a maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series (Costa et al 2014, arXiv:1406.7253) we study the stability of the radius function at the Cauchy horizon. In the third and final paper (Costa et al 2014,arXiv:1406.7261) we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-17T14:37:22Z
2015-01-01T00:00:00Z
2015
2019-05-02T10:25:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/8179
url http://hdl.handle.net/10071/8179
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0264-9381
10.1088/0264-9381/32/1/015017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134685910007808