On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/8179 |
Resumo: | This paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a 'suitably regular' Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of a maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series (Costa et al 2014, arXiv:1406.7253) we study the stability of the radius function at the Cauchy horizon. In the third and final paper (Costa et al 2014,arXiv:1406.7261) we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations. |
id |
RCAP_be2ef33291307b8f4111759f2844b404 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/8179 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterionEinstein equationsBlack holesStrong cosmic censorshipCauchy horizonScalar fieldSpherical symmetryThis paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a 'suitably regular' Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of a maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series (Costa et al 2014, arXiv:1406.7253) we study the stability of the radius function at the Cauchy horizon. In the third and final paper (Costa et al 2014,arXiv:1406.7261) we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations.IOP Publishing2014-12-17T14:37:22Z2015-01-01T00:00:00Z20152019-05-02T10:25:58Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10071/8179eng0264-938110.1088/0264-9381/32/1/015017Costa, J. L.Girão, P. M.Natário, J.Silva, J. S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:28:59Zoai:repositorio.iscte-iul.pt:10071/8179Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:58.592823Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
title |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
spellingShingle |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion Costa, J. L. Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry |
title_short |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
title_full |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
title_fullStr |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
title_full_unstemmed |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
title_sort |
On the global uniqueness for the Einstein–Maxwell-scalar field system with a cosmological constant: I. Well posedness and breakdown criterion |
author |
Costa, J. L. |
author_facet |
Costa, J. L. Girão, P. M. Natário, J. Silva, J. S. |
author_role |
author |
author2 |
Girão, P. M. Natário, J. Silva, J. S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Costa, J. L. Girão, P. M. Natário, J. Silva, J. S. |
dc.subject.por.fl_str_mv |
Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry |
topic |
Einstein equations Black holes Strong cosmic censorship Cauchy horizon Scalar field Spherical symmetry |
description |
This paper is the first part of a trilogy dedicated to the following problem: given spherically symmetric characteristic initial data for the Einstein–Maxwell-scalar field system with a cosmological constant ?, with the data on the outgoing initial null hypersurface given by a subextremal Reissner–Nordström black hole event horizon, study the future extendibility of the corresponding maximal globally hyperbolic development (MGHD) as a 'suitably regular' Lorentzian manifold. In this first part we establish well posedness of the Einstein equations for characteristic data satisfying the minimal regularity conditions leading to classical solutions. We also identify the appropriate notion of a maximal solution, from which the construction of the corresponding MGHD follows, and determine breakdown criteria. This is the unavoidable starting point of the analysis; our main results will depend on the detailed understanding of these fundamentals. In the second part of this series (Costa et al 2014, arXiv:1406.7253) we study the stability of the radius function at the Cauchy horizon. In the third and final paper (Costa et al 2014,arXiv:1406.7261) we show that, depending on the decay rate of the initial data, mass inflation may or may not occur; in fact, it is even possible to have (non-isometric) extensions of the spacetime across the Cauchy horizon as classical solutions of the Einstein equations. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-17T14:37:22Z 2015-01-01T00:00:00Z 2015 2019-05-02T10:25:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/8179 |
url |
http://hdl.handle.net/10071/8179 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0264-9381 10.1088/0264-9381/32/1/015017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134685910007808 |