Orthogonal polynomials on the unit circle via a polynomial mapping on the real line

Detalhes bibliográficos
Autor(a) principal: Petronilho, J.
Data de Publicação: 2008
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4583
https://doi.org/10.1016/j.cam.2007.04.024
Resumo: Let {[Phi]n}n[greater-or-equal, slanted]0 be a sequence of monic orthogonal polynomials on the unit circle (OPUC) with respect to a symmetric and finite positive Borel measure d[mu] on [0,2[pi]] and let -1,[alpha]0,[alpha]1,[alpha]2,... be the associated sequence of Verblunsky coefficients. In this paper we study the sequence of monic OPUC whose sequence of Verblunsky coefficients iswhere b1,b2,...,bN-1 are N-1 fixed real numbers such that bj[set membership, variant](-1,1) for all j=1,2,...,N-1, so that is also orthogonal with respect to a symmetric and finite positive Borel measure on the unit circle. We show that the sequences of monic orthogonal polynomials on the real line (OPRL) corresponding to {[Phi]n}n[greater-or-equal, slanted]0 and (by Szegö's transformation) are related by some polynomial mapping, giving rise to a one-to-one correspondence between the monic OPUC on the unit circle and a pair of monic OPRL on (a subset of) the interval [-1,1]. In particular we prove thatd[mu][small tilde]([theta])=[zeta]N-1([theta])sin[theta]sin[theta]N([theta])d[mu]([theta]N([theta]))[theta]N'([theta]),supported on (a subset of) the union of 2N intervals contained in [0,2[pi]] such that any two of these intervals have at most one common point, and where, up to an affine change in the variable, [zeta]N-1 and cos[theta]N are algebraic polynomials in cos[theta] of degrees N-1 and N (respectively) defined only in terms of [alpha]0,b1,...,bN-1. This measure induces a measure on the unit circle supported on the union of 2N arcs, pairwise symmetric with respect to the real axis. The restriction to symmetric measures (or real Verblunsky coefficients) is needed in order that Szegö's transformation may be applicable.
id RCAP_be73e02f837871708d681a4aecd9b785
oai_identifier_str oai:estudogeral.uc.pt:10316/4583
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Orthogonal polynomials on the unit circle via a polynomial mapping on the real lineOrthogonal polynomialsUnit circlePolynomial mappingsVerblunsky coefficientsRecurrence relationsStieltjes transformsCarathéodory functionsBorel measuresLet {[Phi]n}n[greater-or-equal, slanted]0 be a sequence of monic orthogonal polynomials on the unit circle (OPUC) with respect to a symmetric and finite positive Borel measure d[mu] on [0,2[pi]] and let -1,[alpha]0,[alpha]1,[alpha]2,... be the associated sequence of Verblunsky coefficients. In this paper we study the sequence of monic OPUC whose sequence of Verblunsky coefficients iswhere b1,b2,...,bN-1 are N-1 fixed real numbers such that bj[set membership, variant](-1,1) for all j=1,2,...,N-1, so that is also orthogonal with respect to a symmetric and finite positive Borel measure on the unit circle. We show that the sequences of monic orthogonal polynomials on the real line (OPRL) corresponding to {[Phi]n}n[greater-or-equal, slanted]0 and (by Szegö's transformation) are related by some polynomial mapping, giving rise to a one-to-one correspondence between the monic OPUC on the unit circle and a pair of monic OPRL on (a subset of) the interval [-1,1]. In particular we prove thatd[mu][small tilde]([theta])=[zeta]N-1([theta])sin[theta]sin[theta]N([theta])d[mu]([theta]N([theta]))[theta]N'([theta]),supported on (a subset of) the union of 2N intervals contained in [0,2[pi]] such that any two of these intervals have at most one common point, and where, up to an affine change in the variable, [zeta]N-1 and cos[theta]N are algebraic polynomials in cos[theta] of degrees N-1 and N (respectively) defined only in terms of [alpha]0,b1,...,bN-1. This measure induces a measure on the unit circle supported on the union of 2N arcs, pairwise symmetric with respect to the real axis. The restriction to symmetric measures (or real Verblunsky coefficients) is needed in order that Szegö's transformation may be applicable.http://www.sciencedirect.com/science/article/B6TYH-4NNWCG5-1/1/5cc167c4a58817de62d99d3dd5c88e392008info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4583http://hdl.handle.net/10316/4583https://doi.org/10.1016/j.cam.2007.04.024engJournal of Computational and Applied Mathematics. 216:1 (2008) 98-127Petronilho, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:48:50Zoai:estudogeral.uc.pt:10316/4583Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:41.086699Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
title Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
spellingShingle Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
Petronilho, J.
Orthogonal polynomials
Unit circle
Polynomial mappings
Verblunsky coefficients
Recurrence relations
Stieltjes transforms
Carathéodory functions
Borel measures
title_short Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
title_full Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
title_fullStr Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
title_full_unstemmed Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
title_sort Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
author Petronilho, J.
author_facet Petronilho, J.
author_role author
dc.contributor.author.fl_str_mv Petronilho, J.
dc.subject.por.fl_str_mv Orthogonal polynomials
Unit circle
Polynomial mappings
Verblunsky coefficients
Recurrence relations
Stieltjes transforms
Carathéodory functions
Borel measures
topic Orthogonal polynomials
Unit circle
Polynomial mappings
Verblunsky coefficients
Recurrence relations
Stieltjes transforms
Carathéodory functions
Borel measures
description Let {[Phi]n}n[greater-or-equal, slanted]0 be a sequence of monic orthogonal polynomials on the unit circle (OPUC) with respect to a symmetric and finite positive Borel measure d[mu] on [0,2[pi]] and let -1,[alpha]0,[alpha]1,[alpha]2,... be the associated sequence of Verblunsky coefficients. In this paper we study the sequence of monic OPUC whose sequence of Verblunsky coefficients iswhere b1,b2,...,bN-1 are N-1 fixed real numbers such that bj[set membership, variant](-1,1) for all j=1,2,...,N-1, so that is also orthogonal with respect to a symmetric and finite positive Borel measure on the unit circle. We show that the sequences of monic orthogonal polynomials on the real line (OPRL) corresponding to {[Phi]n}n[greater-or-equal, slanted]0 and (by Szegö's transformation) are related by some polynomial mapping, giving rise to a one-to-one correspondence between the monic OPUC on the unit circle and a pair of monic OPRL on (a subset of) the interval [-1,1]. In particular we prove thatd[mu][small tilde]([theta])=[zeta]N-1([theta])sin[theta]sin[theta]N([theta])d[mu]([theta]N([theta]))[theta]N'([theta]),supported on (a subset of) the union of 2N intervals contained in [0,2[pi]] such that any two of these intervals have at most one common point, and where, up to an affine change in the variable, [zeta]N-1 and cos[theta]N are algebraic polynomials in cos[theta] of degrees N-1 and N (respectively) defined only in terms of [alpha]0,b1,...,bN-1. This measure induces a measure on the unit circle supported on the union of 2N arcs, pairwise symmetric with respect to the real axis. The restriction to symmetric measures (or real Verblunsky coefficients) is needed in order that Szegö's transformation may be applicable.
publishDate 2008
dc.date.none.fl_str_mv 2008
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4583
http://hdl.handle.net/10316/4583
https://doi.org/10.1016/j.cam.2007.04.024
url http://hdl.handle.net/10316/4583
https://doi.org/10.1016/j.cam.2007.04.024
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Computational and Applied Mathematics. 216:1 (2008) 98-127
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897121857536