A deep learning based object identification system for forest fire detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/132721 |
Resumo: | POCI-01-0247-FEDER-038342 |
id |
RCAP_be952cfc6ed7de538242ca558ee44b59 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/132721 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A deep learning based object identification system for forest fire detectionDeep learningFire detectionSmoke detectionWildfiresForestryBuilding and ConstructionSafety, Risk, Reliability and QualityEnvironmental Science (miscellaneous)Safety ResearchEarth and Planetary Sciences (miscellaneous)POCI-01-0247-FEDER-038342Forest fires are still a large concern in several countries due to the social, environmental and economic damages caused. This paper aims to show the design and validation of a proposed system for the classification of smoke columns with object detection and a deep learning-based approach. This approach is able to detect smoke columns visible below or above the horizon. During the dataset labelling, the smoke object was divided into three different classes, depending on its distance to the horizon, a cloud object was also added, along with images without annotations. A comparison between the use of RetinaNet and Faster R-CNN was also performed. Using an independent test set, an F1-score around 80%, a G-mean around 80% and a detection rate around 90% were achieved by the two best models: both were trained with the dataset labelled with three different smoke classes and with augmentation; Faster R-CNNN was the model architecture, re-trained during the same iterations but following different learning rate schedules. Finally, these models were tested in 24 smoke sequences of the public HPWREN dataset, with 6.3 min as the average time elapsed from the start of the fire compared to the first detection of a smoke column.LIBPhys-UNLDF – Departamento de FísicaRUNGuede-Fernández, FedericoMartins, Leonardode Almeida, Rui ValenteGamboa, HugoVieira, Pedro2022-02-10T23:19:07Z2021-122021-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10362/132721engPURE: 36699596https://doi.org/10.3390/fire4040075info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:11:23Zoai:run.unl.pt:10362/132721Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:47:34.380488Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A deep learning based object identification system for forest fire detection |
title |
A deep learning based object identification system for forest fire detection |
spellingShingle |
A deep learning based object identification system for forest fire detection Guede-Fernández, Federico Deep learning Fire detection Smoke detection Wildfires Forestry Building and Construction Safety, Risk, Reliability and Quality Environmental Science (miscellaneous) Safety Research Earth and Planetary Sciences (miscellaneous) |
title_short |
A deep learning based object identification system for forest fire detection |
title_full |
A deep learning based object identification system for forest fire detection |
title_fullStr |
A deep learning based object identification system for forest fire detection |
title_full_unstemmed |
A deep learning based object identification system for forest fire detection |
title_sort |
A deep learning based object identification system for forest fire detection |
author |
Guede-Fernández, Federico |
author_facet |
Guede-Fernández, Federico Martins, Leonardo de Almeida, Rui Valente Gamboa, Hugo Vieira, Pedro |
author_role |
author |
author2 |
Martins, Leonardo de Almeida, Rui Valente Gamboa, Hugo Vieira, Pedro |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
LIBPhys-UNL DF – Departamento de Física RUN |
dc.contributor.author.fl_str_mv |
Guede-Fernández, Federico Martins, Leonardo de Almeida, Rui Valente Gamboa, Hugo Vieira, Pedro |
dc.subject.por.fl_str_mv |
Deep learning Fire detection Smoke detection Wildfires Forestry Building and Construction Safety, Risk, Reliability and Quality Environmental Science (miscellaneous) Safety Research Earth and Planetary Sciences (miscellaneous) |
topic |
Deep learning Fire detection Smoke detection Wildfires Forestry Building and Construction Safety, Risk, Reliability and Quality Environmental Science (miscellaneous) Safety Research Earth and Planetary Sciences (miscellaneous) |
description |
POCI-01-0247-FEDER-038342 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 2021-12-01T00:00:00Z 2022-02-10T23:19:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/132721 |
url |
http://hdl.handle.net/10362/132721 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
PURE: 36699596 https://doi.org/10.3390/fire4040075 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138078687756288 |