Predict hourly patient discharge probability in intensive care units using data mining
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/31406 |
Resumo: | The length of stay (LOS) is an important metric to manage hospital units since a correct prevision of the LOS can contribute to reduce costs and optimize resources. This metric become more fundamental in intensive care units (ICU) where controlling patient condition and predict clinical events is very di cult. A set of experiences was made using data mining techniques in order to predict something more ambitious than LOS. Using the data provided by INTCare system it was possible to induce models with a very good sensitivity (95%) in order to predict the probability of a patient be discharged in the next hour. The results achieved also allow for predicting the bed occupancy rate in ICU for the next hour. The work done represents a novelty in this area and contributes to improve the decision making process providing new knowledge in real time. |
id |
RCAP_beb2b8380a7c21b68372a92861a7c526 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/31406 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predict hourly patient discharge probability in intensive care units using data miningLOSINTCareICUData miningOccupancy rateThe length of stay (LOS) is an important metric to manage hospital units since a correct prevision of the LOS can contribute to reduce costs and optimize resources. This metric become more fundamental in intensive care units (ICU) where controlling patient condition and predict clinical events is very di cult. A set of experiences was made using data mining techniques in order to predict something more ambitious than LOS. Using the data provided by INTCare system it was possible to induce models with a very good sensitivity (95%) in order to predict the probability of a patient be discharged in the next hour. The results achieved also allow for predicting the bed occupancy rate in ICU for the next hour. The work done represents a novelty in this area and contributes to improve the decision making process providing new knowledge in real time.This work has been supported by FCT Fundação para a Ciência e Tecnologia in the scope of the project: PEstOE/EEI/UI0319/2014. The authors would like to thank FCT (Foundation of Science and Technology, Portugal) for the financial support through the contract PTDC/EEI-SII/1302/2012 (INTCare II).Science Society of ThailandUniversidade do MinhoPortela, FilipeVeloso, RuiSantos, Manuel FilipeMachado, José ManuelAbelha, AntónioSilva, ÁlvaroRua, FernandoOliveira, Sérgio Manuel Costa20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/31406por1513-1874info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:13Zoai:repositorium.sdum.uminho.pt:1822/31406Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:58:06.104532Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predict hourly patient discharge probability in intensive care units using data mining |
title |
Predict hourly patient discharge probability in intensive care units using data mining |
spellingShingle |
Predict hourly patient discharge probability in intensive care units using data mining Portela, Filipe LOS INTCare ICU Data mining Occupancy rate |
title_short |
Predict hourly patient discharge probability in intensive care units using data mining |
title_full |
Predict hourly patient discharge probability in intensive care units using data mining |
title_fullStr |
Predict hourly patient discharge probability in intensive care units using data mining |
title_full_unstemmed |
Predict hourly patient discharge probability in intensive care units using data mining |
title_sort |
Predict hourly patient discharge probability in intensive care units using data mining |
author |
Portela, Filipe |
author_facet |
Portela, Filipe Veloso, Rui Santos, Manuel Filipe Machado, José Manuel Abelha, António Silva, Álvaro Rua, Fernando Oliveira, Sérgio Manuel Costa |
author_role |
author |
author2 |
Veloso, Rui Santos, Manuel Filipe Machado, José Manuel Abelha, António Silva, Álvaro Rua, Fernando Oliveira, Sérgio Manuel Costa |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Portela, Filipe Veloso, Rui Santos, Manuel Filipe Machado, José Manuel Abelha, António Silva, Álvaro Rua, Fernando Oliveira, Sérgio Manuel Costa |
dc.subject.por.fl_str_mv |
LOS INTCare ICU Data mining Occupancy rate |
topic |
LOS INTCare ICU Data mining Occupancy rate |
description |
The length of stay (LOS) is an important metric to manage hospital units since a correct prevision of the LOS can contribute to reduce costs and optimize resources. This metric become more fundamental in intensive care units (ICU) where controlling patient condition and predict clinical events is very di cult. A set of experiences was made using data mining techniques in order to predict something more ambitious than LOS. Using the data provided by INTCare system it was possible to induce models with a very good sensitivity (95%) in order to predict the probability of a patient be discharged in the next hour. The results achieved also allow for predicting the bed occupancy rate in ICU for the next hour. The work done represents a novelty in this area and contributes to improve the decision making process providing new knowledge in real time. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/31406 |
url |
http://hdl.handle.net/1822/31406 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
1513-1874 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Science Society of Thailand |
publisher.none.fl_str_mv |
Science Society of Thailand |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132371198410752 |