Predict hourly patient discharge probability in intensive care units using data mining

Detalhes bibliográficos
Autor(a) principal: Portela, Filipe
Data de Publicação: 2014
Outros Autores: Veloso, Rui, Santos, Manuel Filipe, Machado, José Manuel, Abelha, António, Silva, Álvaro, Rua, Fernando, Oliveira, Sérgio Manuel Costa
Tipo de documento: Artigo
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/31406
Resumo: The length of stay (LOS) is an important metric to manage hospital units since a correct prevision of the LOS can contribute to reduce costs and optimize resources. This metric become more fundamental in intensive care units (ICU) where controlling patient condition and predict clinical events is very di cult. A set of experiences was made using data mining techniques in order to predict something more ambitious than LOS. Using the data provided by INTCare system it was possible to induce models with a very good sensitivity (95%) in order to predict the probability of a patient be discharged in the next hour. The results achieved also allow for predicting the bed occupancy rate in ICU for the next hour. The work done represents a novelty in this area and contributes to improve the decision making process providing new knowledge in real time.
id RCAP_beb2b8380a7c21b68372a92861a7c526
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/31406
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Predict hourly patient discharge probability in intensive care units using data miningLOSINTCareICUData miningOccupancy rateThe length of stay (LOS) is an important metric to manage hospital units since a correct prevision of the LOS can contribute to reduce costs and optimize resources. This metric become more fundamental in intensive care units (ICU) where controlling patient condition and predict clinical events is very di cult. A set of experiences was made using data mining techniques in order to predict something more ambitious than LOS. Using the data provided by INTCare system it was possible to induce models with a very good sensitivity (95%) in order to predict the probability of a patient be discharged in the next hour. The results achieved also allow for predicting the bed occupancy rate in ICU for the next hour. The work done represents a novelty in this area and contributes to improve the decision making process providing new knowledge in real time.This work has been supported by FCT Fundação para a Ciência e Tecnologia in the scope of the project: PEstOE/EEI/UI0319/2014. The authors would like to thank FCT (Foundation of Science and Technology, Portugal) for the financial support through the contract PTDC/EEI-SII/1302/2012 (INTCare II).Science Society of ThailandUniversidade do MinhoPortela, FilipeVeloso, RuiSantos, Manuel FilipeMachado, José ManuelAbelha, AntónioSilva, ÁlvaroRua, FernandoOliveira, Sérgio Manuel Costa20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/31406por1513-1874info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:07:13Zoai:repositorium.sdum.uminho.pt:1822/31406Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:58:06.104532Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Predict hourly patient discharge probability in intensive care units using data mining
title Predict hourly patient discharge probability in intensive care units using data mining
spellingShingle Predict hourly patient discharge probability in intensive care units using data mining
Portela, Filipe
LOS
INTCare
ICU
Data mining
Occupancy rate
title_short Predict hourly patient discharge probability in intensive care units using data mining
title_full Predict hourly patient discharge probability in intensive care units using data mining
title_fullStr Predict hourly patient discharge probability in intensive care units using data mining
title_full_unstemmed Predict hourly patient discharge probability in intensive care units using data mining
title_sort Predict hourly patient discharge probability in intensive care units using data mining
author Portela, Filipe
author_facet Portela, Filipe
Veloso, Rui
Santos, Manuel Filipe
Machado, José Manuel
Abelha, António
Silva, Álvaro
Rua, Fernando
Oliveira, Sérgio Manuel Costa
author_role author
author2 Veloso, Rui
Santos, Manuel Filipe
Machado, José Manuel
Abelha, António
Silva, Álvaro
Rua, Fernando
Oliveira, Sérgio Manuel Costa
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Portela, Filipe
Veloso, Rui
Santos, Manuel Filipe
Machado, José Manuel
Abelha, António
Silva, Álvaro
Rua, Fernando
Oliveira, Sérgio Manuel Costa
dc.subject.por.fl_str_mv LOS
INTCare
ICU
Data mining
Occupancy rate
topic LOS
INTCare
ICU
Data mining
Occupancy rate
description The length of stay (LOS) is an important metric to manage hospital units since a correct prevision of the LOS can contribute to reduce costs and optimize resources. This metric become more fundamental in intensive care units (ICU) where controlling patient condition and predict clinical events is very di cult. A set of experiences was made using data mining techniques in order to predict something more ambitious than LOS. Using the data provided by INTCare system it was possible to induce models with a very good sensitivity (95%) in order to predict the probability of a patient be discharged in the next hour. The results achieved also allow for predicting the bed occupancy rate in ICU for the next hour. The work done represents a novelty in this area and contributes to improve the decision making process providing new knowledge in real time.
publishDate 2014
dc.date.none.fl_str_mv 2014
2014-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/31406
url http://hdl.handle.net/1822/31406
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv 1513-1874
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Science Society of Thailand
publisher.none.fl_str_mv Science Society of Thailand
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132371198410752