Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/22463 |
Resumo: | In this paper, multiple evolutionary algorithms are applied to solve an energy resource management problem in the day-ahead context involving a risk-based analysis corresponding to the proposed 2022 competition on evolutionary computation. We test numerous evolutionary algorithms for a risk-averse day-ahead operation to show preliminary results for the competition. We use evolutionary computation to follow the competition guidelines. Results show that the HyDE algorithm obtains a better solution with lesser costs when compared to the other tested algorithm due to the minimization of worst-scenario impact. |
id |
RCAP_bf618c02036a52f8edc8e8de4f121579 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/22463 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competitionComputing methodologiesSearch methodologiesApplied computingEngineeringIn this paper, multiple evolutionary algorithms are applied to solve an energy resource management problem in the day-ahead context involving a risk-based analysis corresponding to the proposed 2022 competition on evolutionary computation. We test numerous evolutionary algorithms for a risk-averse day-ahead operation to show preliminary results for the competition. We use evolutionary computation to follow the competition guidelines. Results show that the HyDE algorithm obtains a better solution with lesser costs when compared to the other tested algorithm due to the minimization of worst-scenario impact.This research has received funding from FEDER funds through the Operational Programme for Competitiveness and Internationaliza- tion (COMPETE 2020), under Project POCI-01-0145-FEDER-028983; by National Funds through the FCT Portuguese Foundation for Science and Technology, under Projects PTDC/EEI-EEE/28983/2017 (CENERGETIC), CEECIND/02814/2017, UIDB/000760/2020, and UIDP/00760/2020ACMRepositório Científico do Instituto Politécnico do PortoAlmeida, JoséLezama, FernandoSoares, JoãoVale, ZitaCanizes, Bruno2023-03-14T09:28:38Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/22463eng978-1-4503-9268-610.1145/3520304.3535080info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-22T01:46:51Zoai:recipp.ipp.pt:10400.22/22463Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:42:34.091996Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
title |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
spellingShingle |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition Almeida, José Computing methodologies Search methodologies Applied computing Engineering |
title_short |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
title_full |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
title_fullStr |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
title_full_unstemmed |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
title_sort |
Preliminary results of advanced heuristic optimization in the risk-based energy scheduling competition |
author |
Almeida, José |
author_facet |
Almeida, José Lezama, Fernando Soares, João Vale, Zita Canizes, Bruno |
author_role |
author |
author2 |
Lezama, Fernando Soares, João Vale, Zita Canizes, Bruno |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Almeida, José Lezama, Fernando Soares, João Vale, Zita Canizes, Bruno |
dc.subject.por.fl_str_mv |
Computing methodologies Search methodologies Applied computing Engineering |
topic |
Computing methodologies Search methodologies Applied computing Engineering |
description |
In this paper, multiple evolutionary algorithms are applied to solve an energy resource management problem in the day-ahead context involving a risk-based analysis corresponding to the proposed 2022 competition on evolutionary computation. We test numerous evolutionary algorithms for a risk-averse day-ahead operation to show preliminary results for the competition. We use evolutionary computation to follow the competition guidelines. Results show that the HyDE algorithm obtains a better solution with lesser costs when compared to the other tested algorithm due to the minimization of worst-scenario impact. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2023-03-14T09:28:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/22463 |
url |
http://hdl.handle.net/10400.22/22463 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
978-1-4503-9268-6 10.1145/3520304.3535080 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
ACM |
publisher.none.fl_str_mv |
ACM |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1817551188269203456 |