Are internally observable vehicle data good predictors of vehicle emissions?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/27143 |
Resumo: | Scientific research has demonstrated that on-road exhaust emissions in diesel passenger vehicles (DPV) exceeds the official laboratory-test values. Increasing concern about the quantification of magnitude for these differences has meant an increasing use of Portable Emissions Monitoring System (PEMS), but the direct use of Internally Observable Variables (IOVs) can be useful to predict emissions. The motivation for this paper is to develop an empirical approach that integrates second-by-second vehicle activity and emission rates for DPV. The objectives of this research are two-fold: (1) to assess the effect of variation in acceleration-based parameters, vehicle specific power (VSP) and IOVs on carbon dioxide (CO2) and nitrogen oxides (NOx) emission rates; and (2) to examine the correlation between IOV-based predictors of engine load and VSP. Field measurements were collected from four DPV (two small, one medium and one multi-purpose) in urban, rural and highway routes using PEMS, Global Positioning System (GPS) receivers and On-board Diagnostic (OBD) scan tool, to measure real-world exhaust emissions and engine activity data. Results suggest the relative positive acceleration (RPA) and mean positive acceleration (MPA) allowed a good differentiation with respect to route trips. IOVs models based on the product of manifold absolute pressure (MAP) and engine revolutions per minute (RPM), and VSP showed to be good predictors of emission rates. Although the CO2 correlation was found to be good (R2 > 0.8), the models for NOx showed mixed results since some vehicles showed a reasonable correlation (R2 ~ 0.7) while others resulted in worst model predictions (R2 < 0.6). IOVs models have potential to be integrated into vehicle engine units and connected vehicles, for instance, to provide real-time information on emissions rates, but other parameters regarding the thermal management on after treatment system must be included in NOx prediction. This would allow for a better understanding of true physics behind NOx emissions in DPV. |
id |
RCAP_bf6621c4d1fc4e158fa43e7cafddf102 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/27143 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Are internally observable vehicle data good predictors of vehicle emissions?Portable emissions measurement systemOn-road emissionsDieselInternally observable variablesVehicle specific powerScientific research has demonstrated that on-road exhaust emissions in diesel passenger vehicles (DPV) exceeds the official laboratory-test values. Increasing concern about the quantification of magnitude for these differences has meant an increasing use of Portable Emissions Monitoring System (PEMS), but the direct use of Internally Observable Variables (IOVs) can be useful to predict emissions. The motivation for this paper is to develop an empirical approach that integrates second-by-second vehicle activity and emission rates for DPV. The objectives of this research are two-fold: (1) to assess the effect of variation in acceleration-based parameters, vehicle specific power (VSP) and IOVs on carbon dioxide (CO2) and nitrogen oxides (NOx) emission rates; and (2) to examine the correlation between IOV-based predictors of engine load and VSP. Field measurements were collected from four DPV (two small, one medium and one multi-purpose) in urban, rural and highway routes using PEMS, Global Positioning System (GPS) receivers and On-board Diagnostic (OBD) scan tool, to measure real-world exhaust emissions and engine activity data. Results suggest the relative positive acceleration (RPA) and mean positive acceleration (MPA) allowed a good differentiation with respect to route trips. IOVs models based on the product of manifold absolute pressure (MAP) and engine revolutions per minute (RPM), and VSP showed to be good predictors of emission rates. Although the CO2 correlation was found to be good (R2 > 0.8), the models for NOx showed mixed results since some vehicles showed a reasonable correlation (R2 ~ 0.7) while others resulted in worst model predictions (R2 < 0.6). IOVs models have potential to be integrated into vehicle engine units and connected vehicles, for instance, to provide real-time information on emissions rates, but other parameters regarding the thermal management on after treatment system must be included in NOx prediction. This would allow for a better understanding of true physics behind NOx emissions in DPV.Elsevier2019-122019-12-01T00:00:00Z2021-12-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27143eng1361-920910.1016/j.trd.2019.11.004Fernandes, P.Macedo, E.Bahmankhah, B.Tomas, R. F.Bandeira, J. M.Coelho, Margarida C.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:52:32Zoai:ria.ua.pt:10773/27143Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:58.546156Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Are internally observable vehicle data good predictors of vehicle emissions? |
title |
Are internally observable vehicle data good predictors of vehicle emissions? |
spellingShingle |
Are internally observable vehicle data good predictors of vehicle emissions? Fernandes, P. Portable emissions measurement system On-road emissions Diesel Internally observable variables Vehicle specific power |
title_short |
Are internally observable vehicle data good predictors of vehicle emissions? |
title_full |
Are internally observable vehicle data good predictors of vehicle emissions? |
title_fullStr |
Are internally observable vehicle data good predictors of vehicle emissions? |
title_full_unstemmed |
Are internally observable vehicle data good predictors of vehicle emissions? |
title_sort |
Are internally observable vehicle data good predictors of vehicle emissions? |
author |
Fernandes, P. |
author_facet |
Fernandes, P. Macedo, E. Bahmankhah, B. Tomas, R. F. Bandeira, J. M. Coelho, Margarida C. |
author_role |
author |
author2 |
Macedo, E. Bahmankhah, B. Tomas, R. F. Bandeira, J. M. Coelho, Margarida C. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Fernandes, P. Macedo, E. Bahmankhah, B. Tomas, R. F. Bandeira, J. M. Coelho, Margarida C. |
dc.subject.por.fl_str_mv |
Portable emissions measurement system On-road emissions Diesel Internally observable variables Vehicle specific power |
topic |
Portable emissions measurement system On-road emissions Diesel Internally observable variables Vehicle specific power |
description |
Scientific research has demonstrated that on-road exhaust emissions in diesel passenger vehicles (DPV) exceeds the official laboratory-test values. Increasing concern about the quantification of magnitude for these differences has meant an increasing use of Portable Emissions Monitoring System (PEMS), but the direct use of Internally Observable Variables (IOVs) can be useful to predict emissions. The motivation for this paper is to develop an empirical approach that integrates second-by-second vehicle activity and emission rates for DPV. The objectives of this research are two-fold: (1) to assess the effect of variation in acceleration-based parameters, vehicle specific power (VSP) and IOVs on carbon dioxide (CO2) and nitrogen oxides (NOx) emission rates; and (2) to examine the correlation between IOV-based predictors of engine load and VSP. Field measurements were collected from four DPV (two small, one medium and one multi-purpose) in urban, rural and highway routes using PEMS, Global Positioning System (GPS) receivers and On-board Diagnostic (OBD) scan tool, to measure real-world exhaust emissions and engine activity data. Results suggest the relative positive acceleration (RPA) and mean positive acceleration (MPA) allowed a good differentiation with respect to route trips. IOVs models based on the product of manifold absolute pressure (MAP) and engine revolutions per minute (RPM), and VSP showed to be good predictors of emission rates. Although the CO2 correlation was found to be good (R2 > 0.8), the models for NOx showed mixed results since some vehicles showed a reasonable correlation (R2 ~ 0.7) while others resulted in worst model predictions (R2 < 0.6). IOVs models have potential to be integrated into vehicle engine units and connected vehicles, for instance, to provide real-time information on emissions rates, but other parameters regarding the thermal management on after treatment system must be included in NOx prediction. This would allow for a better understanding of true physics behind NOx emissions in DPV. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 2019-12-01T00:00:00Z 2021-12-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/27143 |
url |
http://hdl.handle.net/10773/27143 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1361-9209 10.1016/j.trd.2019.11.004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137654298640384 |