Multiscale and Multi-Granularity Process Analytics: A Review
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/107313 https://doi.org/10.3390/pr7020061 |
Resumo: | As Industry 4.0 makes its course into the Chemical Processing Industry (CPI), new challenges emerge that require an adaptation of the Process Analytics toolkit. In particular, two recurring classes of problems arise, motivated by the growing complexity of systems on one hand, and increasing data throughput (i.e., the product of two well-known “V’s” from Big Data: Volume Velocity) on the other. More specifically, as enabling IT technologies (IoT, smart sensors, etc.) enlarge the focus of analysis from the unit level to the entire plant or even to the supply chain level, the existence of relevant dynamics at multiple scales becomes a common pattern; therefore, multiscale methods are called for and must be applied in order to avoid biased analysis towards a certain scale, compromising the benefits from the balanced exploitation of the information content at all scales. Also, these same enabling technologies currently collect large volumes of data at high-sampling rates, creating a flood of digital information that needs to be properly handled; optimal data aggregation provides an efficient solution to this challenge, leading to the emergence of multi-granularity frameworks. In this article, an overview is presented on multiscale and multi-granularity methods that are likely to play an important role in the future of Process Analytics with respect to several common activities, such as data integration/fusion, de-noising, process monitoring and predictive modelling, among others. |
id |
RCAP_bf709dd13f545894f36989e4851f4c73 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/107313 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Multiscale and Multi-Granularity Process Analytics: A Reviewmultiscale methodsmulti-granularity methodsdata aggregationindustrial big dataAs Industry 4.0 makes its course into the Chemical Processing Industry (CPI), new challenges emerge that require an adaptation of the Process Analytics toolkit. In particular, two recurring classes of problems arise, motivated by the growing complexity of systems on one hand, and increasing data throughput (i.e., the product of two well-known “V’s” from Big Data: Volume Velocity) on the other. More specifically, as enabling IT technologies (IoT, smart sensors, etc.) enlarge the focus of analysis from the unit level to the entire plant or even to the supply chain level, the existence of relevant dynamics at multiple scales becomes a common pattern; therefore, multiscale methods are called for and must be applied in order to avoid biased analysis towards a certain scale, compromising the benefits from the balanced exploitation of the information content at all scales. Also, these same enabling technologies currently collect large volumes of data at high-sampling rates, creating a flood of digital information that needs to be properly handled; optimal data aggregation provides an efficient solution to this challenge, leading to the emergence of multi-granularity frameworks. In this article, an overview is presented on multiscale and multi-granularity methods that are likely to play an important role in the future of Process Analytics with respect to several common activities, such as data integration/fusion, de-noising, process monitoring and predictive modelling, among others.MDPI2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/107313http://hdl.handle.net/10316/107313https://doi.org/10.3390/pr7020061eng2227-9717Reis, Marco S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-03T09:44:41Zoai:estudogeral.uc.pt:10316/107313Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:23:41.066567Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Multiscale and Multi-Granularity Process Analytics: A Review |
title |
Multiscale and Multi-Granularity Process Analytics: A Review |
spellingShingle |
Multiscale and Multi-Granularity Process Analytics: A Review Reis, Marco S. multiscale methods multi-granularity methods data aggregation industrial big data |
title_short |
Multiscale and Multi-Granularity Process Analytics: A Review |
title_full |
Multiscale and Multi-Granularity Process Analytics: A Review |
title_fullStr |
Multiscale and Multi-Granularity Process Analytics: A Review |
title_full_unstemmed |
Multiscale and Multi-Granularity Process Analytics: A Review |
title_sort |
Multiscale and Multi-Granularity Process Analytics: A Review |
author |
Reis, Marco S. |
author_facet |
Reis, Marco S. |
author_role |
author |
dc.contributor.author.fl_str_mv |
Reis, Marco S. |
dc.subject.por.fl_str_mv |
multiscale methods multi-granularity methods data aggregation industrial big data |
topic |
multiscale methods multi-granularity methods data aggregation industrial big data |
description |
As Industry 4.0 makes its course into the Chemical Processing Industry (CPI), new challenges emerge that require an adaptation of the Process Analytics toolkit. In particular, two recurring classes of problems arise, motivated by the growing complexity of systems on one hand, and increasing data throughput (i.e., the product of two well-known “V’s” from Big Data: Volume Velocity) on the other. More specifically, as enabling IT technologies (IoT, smart sensors, etc.) enlarge the focus of analysis from the unit level to the entire plant or even to the supply chain level, the existence of relevant dynamics at multiple scales becomes a common pattern; therefore, multiscale methods are called for and must be applied in order to avoid biased analysis towards a certain scale, compromising the benefits from the balanced exploitation of the information content at all scales. Also, these same enabling technologies currently collect large volumes of data at high-sampling rates, creating a flood of digital information that needs to be properly handled; optimal data aggregation provides an efficient solution to this challenge, leading to the emergence of multi-granularity frameworks. In this article, an overview is presented on multiscale and multi-granularity methods that are likely to play an important role in the future of Process Analytics with respect to several common activities, such as data integration/fusion, de-noising, process monitoring and predictive modelling, among others. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/107313 http://hdl.handle.net/10316/107313 https://doi.org/10.3390/pr7020061 |
url |
http://hdl.handle.net/10316/107313 https://doi.org/10.3390/pr7020061 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2227-9717 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134123071111168 |