Valorization of an industrial iron-rich residue by electroreduction for steel production

Detalhes bibliográficos
Autor(a) principal: Duarte, Francisco Henriques
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/38725
Resumo: The development of energy-efficient, carbon-free, and environmentally friendly routes to produce iron and steel is critical for the climate change mitigation. Electrochemical reduction of iron oxides has been gaining attention as a process allowing in-situ reduction, under strong alkaline media with hydrogen and oxygen as by-products. This technology also considers the integration of renewable energies and reduces 87% of CO₂ emissions. In this scope, the present work consists the study of novel electrochemical reduction of akaganeite (β-FeOOH) particle suspensions into iron, under a strongly alkaline solution at low temperature, to study the prospects of using a metallurgical residue as an iron oxide source. The by-product of nickel manufacture is also studied in the frame of this work. Moreover, it was studied other synthetic oxide composition, such as hematite (Fe₂O₃) for comparison purposes. The iron deposition was performed in both galvanostatic and potentiostatic conditions for 16 hours. This allowed the microstructural iron optimization. The synthetic β-FeOOH and Fe₂O₃, as well as the industrial residue suspensions were added to 10 M of NaOH electrolyte at low temperatures of 90 ºC and 18 M of NaOH at 105, 120 and 130 ºC. The selected experimental conditions ensure efficient deposition of iron without significant evolution of hydrogen, allowing an efficiency increase in comparison to the deposition from dissolved iron salts or conventional acidic suspensions. Cyclic-voltammetry was used to study the electrochemical mechanism of reduction. Iron depositions from the β-FeOOH synthetic composition were accessed yet due to the high viscosity of the electrolyte, very low Faradaic efficiencies were achieved, reaching ~4%. Despite the low reproducibility of the synthetic β-FeOOH, promising results were obtained with the residue (β-FeOOH based composition), being not significantly less efficient when compared with the Fe₂O₃ suspensions. The galvanostatic deposition at 90 ºC reached 59% Faradaic efficiency, mere ~2% above the Faradaic Efficiency of Fe₂O₃ suspensions in the same conditions. At higher temperatures with 18 M of NaOH generally, the Faradaic efficiency decrease as the temperature increases, such as for the Fe₂O₃ suspensions, only to reach higher Faradaic efficiencies. The potentiostatic deposition at -1.075 V reached a maximum of 91% of Faradaic Efficiency and 83% at -1.15 V. Combined studies of XRD/SEM/EDS proved the presence of Fe crystals in all electrochemical tests. Certain differences in iron microstructure were found. It is shown that Fe production can be achieved in both synthetic β-FeOOH and Fe₂O₃ as well for the industrial residue. The used industrial residue proved to be a suitable alternative feedstock for the electrolytic production.
id RCAP_c0003c31226d14cb0f1a879851d9b4f9
oai_identifier_str oai:ria.ua.pt:10773/38725
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Valorization of an industrial iron-rich residue by electroreduction for steel productionAlkaline electrolysisAkaganeiteElectroreductionReductionResidueThe development of energy-efficient, carbon-free, and environmentally friendly routes to produce iron and steel is critical for the climate change mitigation. Electrochemical reduction of iron oxides has been gaining attention as a process allowing in-situ reduction, under strong alkaline media with hydrogen and oxygen as by-products. This technology also considers the integration of renewable energies and reduces 87% of CO₂ emissions. In this scope, the present work consists the study of novel electrochemical reduction of akaganeite (β-FeOOH) particle suspensions into iron, under a strongly alkaline solution at low temperature, to study the prospects of using a metallurgical residue as an iron oxide source. The by-product of nickel manufacture is also studied in the frame of this work. Moreover, it was studied other synthetic oxide composition, such as hematite (Fe₂O₃) for comparison purposes. The iron deposition was performed in both galvanostatic and potentiostatic conditions for 16 hours. This allowed the microstructural iron optimization. The synthetic β-FeOOH and Fe₂O₃, as well as the industrial residue suspensions were added to 10 M of NaOH electrolyte at low temperatures of 90 ºC and 18 M of NaOH at 105, 120 and 130 ºC. The selected experimental conditions ensure efficient deposition of iron without significant evolution of hydrogen, allowing an efficiency increase in comparison to the deposition from dissolved iron salts or conventional acidic suspensions. Cyclic-voltammetry was used to study the electrochemical mechanism of reduction. Iron depositions from the β-FeOOH synthetic composition were accessed yet due to the high viscosity of the electrolyte, very low Faradaic efficiencies were achieved, reaching ~4%. Despite the low reproducibility of the synthetic β-FeOOH, promising results were obtained with the residue (β-FeOOH based composition), being not significantly less efficient when compared with the Fe₂O₃ suspensions. The galvanostatic deposition at 90 ºC reached 59% Faradaic efficiency, mere ~2% above the Faradaic Efficiency of Fe₂O₃ suspensions in the same conditions. At higher temperatures with 18 M of NaOH generally, the Faradaic efficiency decrease as the temperature increases, such as for the Fe₂O₃ suspensions, only to reach higher Faradaic efficiencies. The potentiostatic deposition at -1.075 V reached a maximum of 91% of Faradaic Efficiency and 83% at -1.15 V. Combined studies of XRD/SEM/EDS proved the presence of Fe crystals in all electrochemical tests. Certain differences in iron microstructure were found. It is shown that Fe production can be achieved in both synthetic β-FeOOH and Fe₂O₃ as well for the industrial residue. The used industrial residue proved to be a suitable alternative feedstock for the electrolytic production.Perante o desafio de atenuar as consequências das alterações climáticas, é de extrema importância o desenvolvimento de processos energeticamente eficientes e com baixas emissões de CO₂ para a atmosfera, na produção de ferro e aço. Ao longo dos anos, a redução eletroquímica direta tem vindo a receber cada vez mais atenção como processo que realiza eficientemente reduções in-situ em meio alcalino, com produção de subprodutos, como o hidrogénio e oxigénio. Esta tecnologia integra as energias renováveis, reduzindo em 87% as emissões de CO₂. Neste âmbito, o presente trabalho teve como objetivo a produção de ferro com recurso à inovadora redução eletroquímica de suspensões alcalinas de akaganeite (β-FeOOH) a baixas temperaturas, com o intuito de estudar as perspetivas de usar um resíduo metalúrgico, como fonte de óxido de ferro. O resíduo estudado para este feito é proveniente da produção de níquel por via eletrólitca e com composição baseada em β-FeOOH. De modo a comparar os resultados obtidos com uma composição sintética de óxidos de ferro já estudada na literatura, escolheu-se a hematite (Fe2O3) como referência. A deposição de ferro foi efetuada na condição galvanostática e potenciostática durante 16 horas. Esta última, permitiu a otimização na composição microestrutural do ferro. As composições sintéticas de β-FeOOH e Fe₂O₃, bem como o resíduo industrial, foram adicionados a eletrólitos de 10 M de NaOH a 90 ºC e a 18 M de NaOH para as temperaturas de 105, 120 e 130 ºC. As condições experimentais selecionadas, possibilitaram deposições de ferro eficientes sem uma evolução significativa de hidrogénio, permitindo um aumento na eficiência em comparação com a deposição de sais de ferro dissolvidos ou suspensões ácidas convencionais. Os mecanismos de redução eletroquímica foram estudados através da voltametria cíclica. É possível obter depósitos de ferro através da redução da composição sintética de β-FeOOH. No entanto, devido ao aumento da viscosidade do eletrólito ao longo da deposição, a eficiência Faradaica foi, de apenas ~4%. Apesar da pouca reprodutibilidade obtida a partir de suspensões sintéticas, o uso do resíduo facilitou eficientemente a eletrodeposição de ferro, apresentando resultados de eficiência semelhantes ao das suspensões de Fe₂O₃. A deposição galvanostática a 90 ºC atingiu 59% de eficiência Faradaica, uma diferença de apenas ~2% da eficiência obtida na suspensão de Fe2O3 nas mesmas condições experimentais. A eficiência diminuiu, de forma geral com o aumento da temperatura de deposição em ambos os casos da utilização do resíduo e Fe₂O₃ a 18 M de NaOH. Por fim, a deposição potenciostática do resíduo apresentou eficiências Faradaicas elevadas, 91% a -1.075 V até os 83% a -1.15 V. Estudos combinados de XRD/SEM/EDS, comprovaram a presença de cristais de ferro em todas as deposições. Conclui-se que é possível produzir ferro através de suspensões sintéticas (β-FeOOH e Fe₂O₃), como também de resíduos industriais à base de β-FeOOH. O resíduo industrial provou ser uma matéria-prima viável para a produção eletrolítica de ferro.2025-02-27T00:00:00Z2023-02-17T00:00:00Z2023-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38725engDuarte, Francisco Henriquesinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:15:01Zoai:ria.ua.pt:10773/38725Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:08:53.098072Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Valorization of an industrial iron-rich residue by electroreduction for steel production
title Valorization of an industrial iron-rich residue by electroreduction for steel production
spellingShingle Valorization of an industrial iron-rich residue by electroreduction for steel production
Duarte, Francisco Henriques
Alkaline electrolysis
Akaganeite
Electroreduction
Reduction
Residue
title_short Valorization of an industrial iron-rich residue by electroreduction for steel production
title_full Valorization of an industrial iron-rich residue by electroreduction for steel production
title_fullStr Valorization of an industrial iron-rich residue by electroreduction for steel production
title_full_unstemmed Valorization of an industrial iron-rich residue by electroreduction for steel production
title_sort Valorization of an industrial iron-rich residue by electroreduction for steel production
author Duarte, Francisco Henriques
author_facet Duarte, Francisco Henriques
author_role author
dc.contributor.author.fl_str_mv Duarte, Francisco Henriques
dc.subject.por.fl_str_mv Alkaline electrolysis
Akaganeite
Electroreduction
Reduction
Residue
topic Alkaline electrolysis
Akaganeite
Electroreduction
Reduction
Residue
description The development of energy-efficient, carbon-free, and environmentally friendly routes to produce iron and steel is critical for the climate change mitigation. Electrochemical reduction of iron oxides has been gaining attention as a process allowing in-situ reduction, under strong alkaline media with hydrogen and oxygen as by-products. This technology also considers the integration of renewable energies and reduces 87% of CO₂ emissions. In this scope, the present work consists the study of novel electrochemical reduction of akaganeite (β-FeOOH) particle suspensions into iron, under a strongly alkaline solution at low temperature, to study the prospects of using a metallurgical residue as an iron oxide source. The by-product of nickel manufacture is also studied in the frame of this work. Moreover, it was studied other synthetic oxide composition, such as hematite (Fe₂O₃) for comparison purposes. The iron deposition was performed in both galvanostatic and potentiostatic conditions for 16 hours. This allowed the microstructural iron optimization. The synthetic β-FeOOH and Fe₂O₃, as well as the industrial residue suspensions were added to 10 M of NaOH electrolyte at low temperatures of 90 ºC and 18 M of NaOH at 105, 120 and 130 ºC. The selected experimental conditions ensure efficient deposition of iron without significant evolution of hydrogen, allowing an efficiency increase in comparison to the deposition from dissolved iron salts or conventional acidic suspensions. Cyclic-voltammetry was used to study the electrochemical mechanism of reduction. Iron depositions from the β-FeOOH synthetic composition were accessed yet due to the high viscosity of the electrolyte, very low Faradaic efficiencies were achieved, reaching ~4%. Despite the low reproducibility of the synthetic β-FeOOH, promising results were obtained with the residue (β-FeOOH based composition), being not significantly less efficient when compared with the Fe₂O₃ suspensions. The galvanostatic deposition at 90 ºC reached 59% Faradaic efficiency, mere ~2% above the Faradaic Efficiency of Fe₂O₃ suspensions in the same conditions. At higher temperatures with 18 M of NaOH generally, the Faradaic efficiency decrease as the temperature increases, such as for the Fe₂O₃ suspensions, only to reach higher Faradaic efficiencies. The potentiostatic deposition at -1.075 V reached a maximum of 91% of Faradaic Efficiency and 83% at -1.15 V. Combined studies of XRD/SEM/EDS proved the presence of Fe crystals in all electrochemical tests. Certain differences in iron microstructure were found. It is shown that Fe production can be achieved in both synthetic β-FeOOH and Fe₂O₃ as well for the industrial residue. The used industrial residue proved to be a suitable alternative feedstock for the electrolytic production.
publishDate 2023
dc.date.none.fl_str_mv 2023-02-17T00:00:00Z
2023-02-17
2025-02-27T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/38725
url http://hdl.handle.net/10773/38725
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137740465373184