3D printing of custom-made implants for bone regeneration

Detalhes bibliográficos
Autor(a) principal: Bento, Ricardo Ferreira
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/30690
Resumo: 3D printing has presented itself as potential game changer in the field of biomedical engineering. Robocasting in particular has shown excellent capability to produce custom-sized porous scaffolds using ceramic pastes. The development of materials and respective processing methods still hasn’t reached one material capable of providing both the biological and mechanical properties required for successful and comprehensive bone tissue regeneration. This work reports the fabrication, processing and characterization of a bioglass with applications as a robocasting ink for tissue regeneration. Milling procedures were adjusted resulting in a two-fold increase in milling efficiency; the effect of temperature on the surface area of mesoporous powders was also studied in detail; robocasting inks containing 35 solids loadings of both bioglass and zirconia powders were prepared and characterized rheologically; a script capable of preparing customizable CAD scaffold geometries was developed; the printing process was adjusted to increase the technique’s resolution; mechanical and biological characterization was performed using compression tests and SBF immersion coupled with MTT assays. The results show the development of the biomaterial was a success with demonstrated potential for 3D printing and biological applications. However, the mechanical properties of these bioactive scaffolds aren’t adequate for load-bearing applications.
id RCAP_c00625f8e5c1e5ae34c335a4efd899cf
oai_identifier_str oai:ria.ua.pt:10773/30690
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling 3D printing of custom-made implants for bone regenerationRobocastingSol-gelBioglass3D printing has presented itself as potential game changer in the field of biomedical engineering. Robocasting in particular has shown excellent capability to produce custom-sized porous scaffolds using ceramic pastes. The development of materials and respective processing methods still hasn’t reached one material capable of providing both the biological and mechanical properties required for successful and comprehensive bone tissue regeneration. This work reports the fabrication, processing and characterization of a bioglass with applications as a robocasting ink for tissue regeneration. Milling procedures were adjusted resulting in a two-fold increase in milling efficiency; the effect of temperature on the surface area of mesoporous powders was also studied in detail; robocasting inks containing 35 solids loadings of both bioglass and zirconia powders were prepared and characterized rheologically; a script capable of preparing customizable CAD scaffold geometries was developed; the printing process was adjusted to increase the technique’s resolution; mechanical and biological characterization was performed using compression tests and SBF immersion coupled with MTT assays. The results show the development of the biomaterial was a success with demonstrated potential for 3D printing and biological applications. However, the mechanical properties of these bioactive scaffolds aren’t adequate for load-bearing applications.O fabrico aditivo tem mostrado um potencial enorme como agente disruptor no campo da engenharia biomédica. O robocasting em particular demonstra excelentes resultados na produção de scaffolds com geometria e tamanho de poros personalizáveis usando pastas cerâmicas. Contudo, o desenvolvimento de materiais e técnicas de processamento ainda não nos presenteou com um material capaz de reunir tanto as propriedades biológicas como as mecânicas para se apresentar como um substituto ósseo fiável em aplicações biomédicas. Este trabalho reporta o fabrico, processamento e caracterização de um biovidro para aplicações em medicina regenerativa. O processo de moagem foi ajustado resultando numa eficiência de moagem duas vezes superior à encontrada na literatura; o efeito da temperatura na área superficial de pós mesoporosos foi estudado; pastas para robocasting contendo 35 % cargas de sólidos de biovidro e zircónia foram produzidas e caracterizadas reologicamente; um script foi desenvolvido, capaz de criar modelos CAD de scaffolds com dimensões personalizáveis; o processo de impressão foi ajustado de modo a aumentar a resolução da técnica; caracterizações mecânica e biológica foram realizadas com recurso a ensaios de compressão e à imersão de amostras em SBF em conjunto com ensaios MTT. Os resultados apontam para o desenvolvimento com um sucesso de um biovidro com potencial para impressão por robocasting bem como em aplicações de engenharia de tecidos. Contudo, as propriedades mecânicas das peças produzidas são insuficientes para uso em situações em que se o material se possa encontrar sujeito a cargas elevadas.2023-02-01T00:00:00Z2021-01-28T00:00:00Z2021-01-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/30690engBento, Ricardo Ferreirainfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:59:16Zoai:ria.ua.pt:10773/30690Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:43.132594Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv 3D printing of custom-made implants for bone regeneration
title 3D printing of custom-made implants for bone regeneration
spellingShingle 3D printing of custom-made implants for bone regeneration
Bento, Ricardo Ferreira
Robocasting
Sol-gel
Bioglass
title_short 3D printing of custom-made implants for bone regeneration
title_full 3D printing of custom-made implants for bone regeneration
title_fullStr 3D printing of custom-made implants for bone regeneration
title_full_unstemmed 3D printing of custom-made implants for bone regeneration
title_sort 3D printing of custom-made implants for bone regeneration
author Bento, Ricardo Ferreira
author_facet Bento, Ricardo Ferreira
author_role author
dc.contributor.author.fl_str_mv Bento, Ricardo Ferreira
dc.subject.por.fl_str_mv Robocasting
Sol-gel
Bioglass
topic Robocasting
Sol-gel
Bioglass
description 3D printing has presented itself as potential game changer in the field of biomedical engineering. Robocasting in particular has shown excellent capability to produce custom-sized porous scaffolds using ceramic pastes. The development of materials and respective processing methods still hasn’t reached one material capable of providing both the biological and mechanical properties required for successful and comprehensive bone tissue regeneration. This work reports the fabrication, processing and characterization of a bioglass with applications as a robocasting ink for tissue regeneration. Milling procedures were adjusted resulting in a two-fold increase in milling efficiency; the effect of temperature on the surface area of mesoporous powders was also studied in detail; robocasting inks containing 35 solids loadings of both bioglass and zirconia powders were prepared and characterized rheologically; a script capable of preparing customizable CAD scaffold geometries was developed; the printing process was adjusted to increase the technique’s resolution; mechanical and biological characterization was performed using compression tests and SBF immersion coupled with MTT assays. The results show the development of the biomaterial was a success with demonstrated potential for 3D printing and biological applications. However, the mechanical properties of these bioactive scaffolds aren’t adequate for load-bearing applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-28T00:00:00Z
2021-01-28
2023-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/30690
url http://hdl.handle.net/10773/30690
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137682479120384