Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2010 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/2549 |
Resumo: | The Variscan belt of Western and Central Europe was formed by the oblique subduction of the Rheic Ocean and the collision of Laurussia with Gondwana during the Late Palaeozoic. We present field relationships and new U–Pb LA-ICP-MS zircon and monazite ages for Variscan gneisses and granites from a key section of the western Iberian Massif. The Martinchel section records the interplay of two kilometre-scale Variscan transcurrent shear zones active in the Gondwana basement of Pangaea: the Porto–Tomar fault zone (PTFZ) and the Coimbra–Córdoba shear zone (CCSZ). Different kinematic models have been invoked to explain the formation and evolution of these major Variscan structures mainly based on assumptions made in the absence of reliable radiometric ages. We show that: (1) ductile deformation and metamorphism were active in the CCSZ during the Visean–Serpukhovian (c.335–318 Ma) and created conditions for amphibolite facies metamorphism and coeval emplacement of granites; and (2) later ductile–brittle deformation related to dextral movements along the PTFZ overprinted the earlier foliation and folds derived from the CCSZ deformation, and deformed the previously intruded granites. U–Pb dating of zircon and monazites yield c.335 Ma ages for the ductile deformation developed under amphibolite facies metamorphic conditions in the Martinchel gneisses of the CCSZ. The gneisses were intruded by granites at c.335–318 Ma, and both were later deformed under ductile–brittle conditions by dextral motion on the PTFZ. The geometry of the Martinchel gneisses (typical of the CCSZ) changed from one of thrusting to one of normal faulting by refolding of the early foliation, stretching lineation and asymmetric structures related to the later PTFZ dextral shear episode. This pattern of interference is not fully considered in previous models and may lead to incorrect tectonic interpretations. According to our data and recently published ages, we suggest that the PTFZ was active after the Serpukhovian–Kasimovian since the c.318–308 Ma granites are deformed by north–south (170°) dextral shear planes. These data are critical to the interpretation of large-scale Carboniferous transcurrent displacements in northern Gondwana (Iberian Massif), and bear upon global models of crustal deformation that emphasize the importance of long-lived dextral movements during the collision between northern Gondwana and Laurussia following the closure of the Rheic Ocean. |
id |
RCAP_c05a8eafb1f1612d671529780641f342 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/2549 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal)transcurrent deformationnorthern GondwanaVariscan orogenyPangaea assemblyCoimbra–Córdoba shear zonePorto–Tomar fault zoneThe Variscan belt of Western and Central Europe was formed by the oblique subduction of the Rheic Ocean and the collision of Laurussia with Gondwana during the Late Palaeozoic. We present field relationships and new U–Pb LA-ICP-MS zircon and monazite ages for Variscan gneisses and granites from a key section of the western Iberian Massif. The Martinchel section records the interplay of two kilometre-scale Variscan transcurrent shear zones active in the Gondwana basement of Pangaea: the Porto–Tomar fault zone (PTFZ) and the Coimbra–Córdoba shear zone (CCSZ). Different kinematic models have been invoked to explain the formation and evolution of these major Variscan structures mainly based on assumptions made in the absence of reliable radiometric ages. We show that: (1) ductile deformation and metamorphism were active in the CCSZ during the Visean–Serpukhovian (c.335–318 Ma) and created conditions for amphibolite facies metamorphism and coeval emplacement of granites; and (2) later ductile–brittle deformation related to dextral movements along the PTFZ overprinted the earlier foliation and folds derived from the CCSZ deformation, and deformed the previously intruded granites. U–Pb dating of zircon and monazites yield c.335 Ma ages for the ductile deformation developed under amphibolite facies metamorphic conditions in the Martinchel gneisses of the CCSZ. The gneisses were intruded by granites at c.335–318 Ma, and both were later deformed under ductile–brittle conditions by dextral motion on the PTFZ. The geometry of the Martinchel gneisses (typical of the CCSZ) changed from one of thrusting to one of normal faulting by refolding of the early foliation, stretching lineation and asymmetric structures related to the later PTFZ dextral shear episode. This pattern of interference is not fully considered in previous models and may lead to incorrect tectonic interpretations. According to our data and recently published ages, we suggest that the PTFZ was active after the Serpukhovian–Kasimovian since the c.318–308 Ma granites are deformed by north–south (170°) dextral shear planes. These data are critical to the interpretation of large-scale Carboniferous transcurrent displacements in northern Gondwana (Iberian Massif), and bear upon global models of crustal deformation that emphasize the importance of long-lived dextral movements during the collision between northern Gondwana and Laurussia following the closure of the Rheic Ocean.Elsevier2011-02-14T09:46:07Z2011-02-142010-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article71744 bytesapplication/pdfhttp://hdl.handle.net/10174/2549http://hdl.handle.net/10174/2549eng461-481Gondwana Research17livrendndndndnd250Pereira, M. FranciscoSilva, J. BrandaoDrost, KerstinChichorro, MartimApraiz, Arturoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T18:39:01Zoai:dspace.uevora.pt:10174/2549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:58:11.735670Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
title |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
spellingShingle |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) Pereira, M. Francisco transcurrent deformation northern Gondwana Variscan orogeny Pangaea assembly Coimbra–Córdoba shear zone Porto–Tomar fault zone |
title_short |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
title_full |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
title_fullStr |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
title_full_unstemmed |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
title_sort |
Relative timing of transcurrent displacements in northern Gondwana: U-Pb laser ablation ICP-MS zircon and monazite geochronology of gneisses and sheared granites from the western Iberia Massif (Portugal) |
author |
Pereira, M. Francisco |
author_facet |
Pereira, M. Francisco Silva, J. Brandao Drost, Kerstin Chichorro, Martim Apraiz, Arturo |
author_role |
author |
author2 |
Silva, J. Brandao Drost, Kerstin Chichorro, Martim Apraiz, Arturo |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Pereira, M. Francisco Silva, J. Brandao Drost, Kerstin Chichorro, Martim Apraiz, Arturo |
dc.subject.por.fl_str_mv |
transcurrent deformation northern Gondwana Variscan orogeny Pangaea assembly Coimbra–Córdoba shear zone Porto–Tomar fault zone |
topic |
transcurrent deformation northern Gondwana Variscan orogeny Pangaea assembly Coimbra–Córdoba shear zone Porto–Tomar fault zone |
description |
The Variscan belt of Western and Central Europe was formed by the oblique subduction of the Rheic Ocean and the collision of Laurussia with Gondwana during the Late Palaeozoic. We present field relationships and new U–Pb LA-ICP-MS zircon and monazite ages for Variscan gneisses and granites from a key section of the western Iberian Massif. The Martinchel section records the interplay of two kilometre-scale Variscan transcurrent shear zones active in the Gondwana basement of Pangaea: the Porto–Tomar fault zone (PTFZ) and the Coimbra–Córdoba shear zone (CCSZ). Different kinematic models have been invoked to explain the formation and evolution of these major Variscan structures mainly based on assumptions made in the absence of reliable radiometric ages. We show that: (1) ductile deformation and metamorphism were active in the CCSZ during the Visean–Serpukhovian (c.335–318 Ma) and created conditions for amphibolite facies metamorphism and coeval emplacement of granites; and (2) later ductile–brittle deformation related to dextral movements along the PTFZ overprinted the earlier foliation and folds derived from the CCSZ deformation, and deformed the previously intruded granites. U–Pb dating of zircon and monazites yield c.335 Ma ages for the ductile deformation developed under amphibolite facies metamorphic conditions in the Martinchel gneisses of the CCSZ. The gneisses were intruded by granites at c.335–318 Ma, and both were later deformed under ductile–brittle conditions by dextral motion on the PTFZ. The geometry of the Martinchel gneisses (typical of the CCSZ) changed from one of thrusting to one of normal faulting by refolding of the early foliation, stretching lineation and asymmetric structures related to the later PTFZ dextral shear episode. This pattern of interference is not fully considered in previous models and may lead to incorrect tectonic interpretations. According to our data and recently published ages, we suggest that the PTFZ was active after the Serpukhovian–Kasimovian since the c.318–308 Ma granites are deformed by north–south (170°) dextral shear planes. These data are critical to the interpretation of large-scale Carboniferous transcurrent displacements in northern Gondwana (Iberian Massif), and bear upon global models of crustal deformation that emphasize the importance of long-lived dextral movements during the collision between northern Gondwana and Laurussia following the closure of the Rheic Ocean. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03-01T00:00:00Z 2011-02-14T09:46:07Z 2011-02-14 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/2549 http://hdl.handle.net/10174/2549 |
url |
http://hdl.handle.net/10174/2549 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
461-481 Gondwana Research 17 livre nd nd nd nd nd 250 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
71744 bytes application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136465190387712 |