SMS-I: Intelligent Security for Cyber–Physical Systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21848 |
Resumo: | Critical infrastructures are an attractive target for attackers, mainly due to the catastrophic impact of these attacks on society. In addition, the cyber–physical nature of these infrastructures makes them more vulnerable to cyber–physical threats and makes the detection, investigation, and remediation of security attacks more difficult. Therefore, improving cyber–physical correlations, forensics investigations, and Incident response tasks is of paramount importance. This work describes the SMS-I tool that allows the improvement of these security aspects in critical infrastructures. Data from heterogeneous systems, over different time frames, are received and correlated. Both physical and logical security are unified and additional security details are analysed to find attack evidence. Different Artificial Intelligence (AI) methodologies are used to process and analyse the multi-dimensional data exploring the temporal correlation between cyber and physical Alerts and going beyond traditional techniques to detect unusual Events, and then find evidence of attacks. SMS-I’s Intelligent Dashboard supports decision makers in a deep analysis of how the breaches and the assets were explored and compromised. It assists and facilitates the security analysts using graphical dashboards and Alert classification suggestions. Therefore, they can more easily identify anomalous situations that can be related to possible Incident occurrences. Users can also explore information, with different levels of detail, including logical information and technical specifications. SMS-I also integrates with a scalable and open Security Incident Response Platform (TheHive) that enables the sharing of information about security Incidents and helps different organizations better understand threats and proactively defend their systems and networks. |
id |
RCAP_c091324ce496081917de9b983adec418 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21848 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
SMS-I: Intelligent Security for Cyber–Physical SystemsCyber–physical systemsDigital forensicsCyber–physical systems forensicsMachine LearningRule miningSecurity incident responseCritical infrastructures are an attractive target for attackers, mainly due to the catastrophic impact of these attacks on society. In addition, the cyber–physical nature of these infrastructures makes them more vulnerable to cyber–physical threats and makes the detection, investigation, and remediation of security attacks more difficult. Therefore, improving cyber–physical correlations, forensics investigations, and Incident response tasks is of paramount importance. This work describes the SMS-I tool that allows the improvement of these security aspects in critical infrastructures. Data from heterogeneous systems, over different time frames, are received and correlated. Both physical and logical security are unified and additional security details are analysed to find attack evidence. Different Artificial Intelligence (AI) methodologies are used to process and analyse the multi-dimensional data exploring the temporal correlation between cyber and physical Alerts and going beyond traditional techniques to detect unusual Events, and then find evidence of attacks. SMS-I’s Intelligent Dashboard supports decision makers in a deep analysis of how the breaches and the assets were explored and compromised. It assists and facilitates the security analysts using graphical dashboards and Alert classification suggestions. Therefore, they can more easily identify anomalous situations that can be related to possible Incident occurrences. Users can also explore information, with different levels of detail, including logical information and technical specifications. SMS-I also integrates with a scalable and open Security Incident Response Platform (TheHive) that enables the sharing of information about security Incidents and helps different organizations better understand threats and proactively defend their systems and networks.This research was funded by the Horizon 2020 Framework Programme under grant agreement No 832969. This output reflects the views only of the author(s), and the European Union cannot be held responsible for any use which may be made of the information contained therein. For more information on the project see: http://satie-h2020.eu/.MDPIRepositório Científico do Instituto Politécnico do PortoMaia, EvaSousa, NorbertoOliveira, NunoWannous, SinanSousa, OrlandoPraça, Isabel2023-01-25T11:11:34Z20222022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21848eng10.3390/info13090403info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:18:10Zoai:recipp.ipp.pt:10400.22/21848Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:55.964042Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
SMS-I: Intelligent Security for Cyber–Physical Systems |
title |
SMS-I: Intelligent Security for Cyber–Physical Systems |
spellingShingle |
SMS-I: Intelligent Security for Cyber–Physical Systems Maia, Eva Cyber–physical systems Digital forensics Cyber–physical systems forensics Machine Learning Rule mining Security incident response |
title_short |
SMS-I: Intelligent Security for Cyber–Physical Systems |
title_full |
SMS-I: Intelligent Security for Cyber–Physical Systems |
title_fullStr |
SMS-I: Intelligent Security for Cyber–Physical Systems |
title_full_unstemmed |
SMS-I: Intelligent Security for Cyber–Physical Systems |
title_sort |
SMS-I: Intelligent Security for Cyber–Physical Systems |
author |
Maia, Eva |
author_facet |
Maia, Eva Sousa, Norberto Oliveira, Nuno Wannous, Sinan Sousa, Orlando Praça, Isabel |
author_role |
author |
author2 |
Sousa, Norberto Oliveira, Nuno Wannous, Sinan Sousa, Orlando Praça, Isabel |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Maia, Eva Sousa, Norberto Oliveira, Nuno Wannous, Sinan Sousa, Orlando Praça, Isabel |
dc.subject.por.fl_str_mv |
Cyber–physical systems Digital forensics Cyber–physical systems forensics Machine Learning Rule mining Security incident response |
topic |
Cyber–physical systems Digital forensics Cyber–physical systems forensics Machine Learning Rule mining Security incident response |
description |
Critical infrastructures are an attractive target for attackers, mainly due to the catastrophic impact of these attacks on society. In addition, the cyber–physical nature of these infrastructures makes them more vulnerable to cyber–physical threats and makes the detection, investigation, and remediation of security attacks more difficult. Therefore, improving cyber–physical correlations, forensics investigations, and Incident response tasks is of paramount importance. This work describes the SMS-I tool that allows the improvement of these security aspects in critical infrastructures. Data from heterogeneous systems, over different time frames, are received and correlated. Both physical and logical security are unified and additional security details are analysed to find attack evidence. Different Artificial Intelligence (AI) methodologies are used to process and analyse the multi-dimensional data exploring the temporal correlation between cyber and physical Alerts and going beyond traditional techniques to detect unusual Events, and then find evidence of attacks. SMS-I’s Intelligent Dashboard supports decision makers in a deep analysis of how the breaches and the assets were explored and compromised. It assists and facilitates the security analysts using graphical dashboards and Alert classification suggestions. Therefore, they can more easily identify anomalous situations that can be related to possible Incident occurrences. Users can also explore information, with different levels of detail, including logical information and technical specifications. SMS-I also integrates with a scalable and open Security Incident Response Platform (TheHive) that enables the sharing of information about security Incidents and helps different organizations better understand threats and proactively defend their systems and networks. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2023-01-25T11:11:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21848 |
url |
http://hdl.handle.net/10400.22/21848 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/info13090403 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131506141036544 |