Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/111171 |
Resumo: | Bravo, J. M., & Coelho, E. (2020). Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms. Boletim da Sociedade Portuguesa de Estatística, (Primavera 2020), 20-29. |
id |
RCAP_c0c635a8db3c80ce91995a2c57cb4d26 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/111171 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning AlgorithmsSDG 3 - Good Health and Well-beingSDG 11 - Sustainable Cities and CommunitiesBravo, J. M., & Coelho, E. (2020). Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms. Boletim da Sociedade Portuguesa de Estatística, (Primavera 2020), 20-29.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBravo, Jorge MiguelCoelho, Edviges2021-02-02T23:37:00Z2020-062020-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10application/pdfhttp://hdl.handle.net/10362/111171eng1646-5903PURE: 18768828info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:54:58Zoai:run.unl.pt:10362/111171Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:41:48.962724Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
title |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
spellingShingle |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms Bravo, Jorge Miguel SDG 3 - Good Health and Well-being SDG 11 - Sustainable Cities and Communities |
title_short |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
title_full |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
title_fullStr |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
title_full_unstemmed |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
title_sort |
Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms |
author |
Bravo, Jorge Miguel |
author_facet |
Bravo, Jorge Miguel Coelho, Edviges |
author_role |
author |
author2 |
Coelho, Edviges |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Bravo, Jorge Miguel Coelho, Edviges |
dc.subject.por.fl_str_mv |
SDG 3 - Good Health and Well-being SDG 11 - Sustainable Cities and Communities |
topic |
SDG 3 - Good Health and Well-being SDG 11 - Sustainable Cities and Communities |
description |
Bravo, J. M., & Coelho, E. (2020). Short-Term Regional Demographic Forecasts with Time Series Methods and Machine Learning Algorithms. Boletim da Sociedade Portuguesa de Estatística, (Primavera 2020), 20-29. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 2020-06-01T00:00:00Z 2021-02-02T23:37:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/111171 |
url |
http://hdl.handle.net/10362/111171 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1646-5903 PURE: 18768828 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
10 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138030957625344 |