Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/24802 |
Resumo: | The inflammation is a complex process which includes several stages, namely the activity of inducible cyclooxygenase 2 (COX-2), as well as the production of reactive species (RS) during the leukocytes’ oxidative burst. Currently, the anti-inflammatory drugs that inhibit COX-2 are linked with various undesired side effects, therefore, it would be interesting to find selective inhibitors to Cox-2 capable of modulate the RS production. Pyrazoles are aromatic heterocyclic compounds made upo f five-element rings with three carbon atoms and two nitrogen atoms. It is recognised that pyrazoles have a strong anti-inflammatory, antibacterial, antifungal, and anticancer action. In this work, a panel of 28 structurally related pyrazoles were evaluated through the inhibition of: human COX-2 activity; the production of PGE2 using a human blood assay; COX-2 expression in human leukocytes’; human leukocytes’ oxidative burst. Lastly, to assess its selectivity, the compounds were tested in vitro against ovine COX-1. The results revealed that several of the tested pyrazoles had a significant inhibitory Effect on COX-2 activity, and compounds 4 and 11B emerged as the most potent inhibitors, with IC50˂25µM. Regardless, amongst the compounds studied only 1ª was able to inhibit both the COX-2 activity and the PGE2 production. Concerning the COX-2 expression, the compounds 14 and 16 stood out since they were able to significantly inhibit its expression. The pyrazole 11B has also demonstrated a selectivity to COX-2, unliked the compound 14, which showed selectivity to COX-1. A multiple of the studied pyrazoles, namely compound 4, showed a potential suppressive Effect (IC50˂5 µM) against human leukocytes’ oxidative burst. At last, various pyrazoles were able to inhibit both pathways (COX-2 and oxidative burst), particularly the pyrazoles 1B, 4 and 11B. This study provided importante considerations about pyrazoles and their promising modulatory Effect against inflammation, which might contribute for the design and development of new anti-inflammatory molecules. |
id |
RCAP_c0e27cb4001279aa945734800474ef07 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/24802 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burstInflammationCyclooxygenase-2Oxydative burstPyrazolesThe inflammation is a complex process which includes several stages, namely the activity of inducible cyclooxygenase 2 (COX-2), as well as the production of reactive species (RS) during the leukocytes’ oxidative burst. Currently, the anti-inflammatory drugs that inhibit COX-2 are linked with various undesired side effects, therefore, it would be interesting to find selective inhibitors to Cox-2 capable of modulate the RS production. Pyrazoles are aromatic heterocyclic compounds made upo f five-element rings with three carbon atoms and two nitrogen atoms. It is recognised that pyrazoles have a strong anti-inflammatory, antibacterial, antifungal, and anticancer action. In this work, a panel of 28 structurally related pyrazoles were evaluated through the inhibition of: human COX-2 activity; the production of PGE2 using a human blood assay; COX-2 expression in human leukocytes’; human leukocytes’ oxidative burst. Lastly, to assess its selectivity, the compounds were tested in vitro against ovine COX-1. The results revealed that several of the tested pyrazoles had a significant inhibitory Effect on COX-2 activity, and compounds 4 and 11B emerged as the most potent inhibitors, with IC50˂25µM. Regardless, amongst the compounds studied only 1ª was able to inhibit both the COX-2 activity and the PGE2 production. Concerning the COX-2 expression, the compounds 14 and 16 stood out since they were able to significantly inhibit its expression. The pyrazole 11B has also demonstrated a selectivity to COX-2, unliked the compound 14, which showed selectivity to COX-1. A multiple of the studied pyrazoles, namely compound 4, showed a potential suppressive Effect (IC50˂5 µM) against human leukocytes’ oxidative burst. At last, various pyrazoles were able to inhibit both pathways (COX-2 and oxidative burst), particularly the pyrazoles 1B, 4 and 11B. This study provided importante considerations about pyrazoles and their promising modulatory Effect against inflammation, which might contribute for the design and development of new anti-inflammatory molecules.Freitas, MarisaMoreira, FernandoRepositório Científico do Instituto Politécnico do PortoSilva, Jorge Miguel Almeida2023-11-032024-11-03T00:00:00Z2023-11-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.22/24802TID:203474716enginfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-14T01:46:12Zoai:recipp.ipp.pt:10400.22/24802Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:59:09.892582Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
title |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
spellingShingle |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst Silva, Jorge Miguel Almeida Inflammation Cyclooxygenase-2 Oxydative burst Pyrazoles |
title_short |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
title_full |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
title_fullStr |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
title_full_unstemmed |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
title_sort |
Pyrazoles modulate the inflammatory process through the inhibition pf COX-2 activity and leucocytes´oxidative burst |
author |
Silva, Jorge Miguel Almeida |
author_facet |
Silva, Jorge Miguel Almeida |
author_role |
author |
dc.contributor.none.fl_str_mv |
Freitas, Marisa Moreira, Fernando Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Silva, Jorge Miguel Almeida |
dc.subject.por.fl_str_mv |
Inflammation Cyclooxygenase-2 Oxydative burst Pyrazoles |
topic |
Inflammation Cyclooxygenase-2 Oxydative burst Pyrazoles |
description |
The inflammation is a complex process which includes several stages, namely the activity of inducible cyclooxygenase 2 (COX-2), as well as the production of reactive species (RS) during the leukocytes’ oxidative burst. Currently, the anti-inflammatory drugs that inhibit COX-2 are linked with various undesired side effects, therefore, it would be interesting to find selective inhibitors to Cox-2 capable of modulate the RS production. Pyrazoles are aromatic heterocyclic compounds made upo f five-element rings with three carbon atoms and two nitrogen atoms. It is recognised that pyrazoles have a strong anti-inflammatory, antibacterial, antifungal, and anticancer action. In this work, a panel of 28 structurally related pyrazoles were evaluated through the inhibition of: human COX-2 activity; the production of PGE2 using a human blood assay; COX-2 expression in human leukocytes’; human leukocytes’ oxidative burst. Lastly, to assess its selectivity, the compounds were tested in vitro against ovine COX-1. The results revealed that several of the tested pyrazoles had a significant inhibitory Effect on COX-2 activity, and compounds 4 and 11B emerged as the most potent inhibitors, with IC50˂25µM. Regardless, amongst the compounds studied only 1ª was able to inhibit both the COX-2 activity and the PGE2 production. Concerning the COX-2 expression, the compounds 14 and 16 stood out since they were able to significantly inhibit its expression. The pyrazole 11B has also demonstrated a selectivity to COX-2, unliked the compound 14, which showed selectivity to COX-1. A multiple of the studied pyrazoles, namely compound 4, showed a potential suppressive Effect (IC50˂5 µM) against human leukocytes’ oxidative burst. At last, various pyrazoles were able to inhibit both pathways (COX-2 and oxidative burst), particularly the pyrazoles 1B, 4 and 11B. This study provided importante considerations about pyrazoles and their promising modulatory Effect against inflammation, which might contribute for the design and development of new anti-inflammatory molecules. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11-03 2023-11-03T00:00:00Z 2024-11-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/24802 TID:203474716 |
url |
http://hdl.handle.net/10400.22/24802 |
identifier_str_mv |
TID:203474716 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137075471056896 |