Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding

Detalhes bibliográficos
Autor(a) principal: Oliveira, C. R.
Data de Publicação: 1984
Outros Autores: Duarte, E. P., Carvalho, A. P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/8345
https://doi.org/10.1111/j.1471-4159.1984.tb00921.x
Resumo: [3H]Spiperone specific binding by microsomal membranes isolated from sheep caudate nucleus is decreased by trypsin and phospholipase A2 (Vipera russeli), but is insensitive to neuraminidase. The inhibitory effect of phospholipase A2 is correlated with phospholipid hydrolysis. After 15 min of phospholipase (5 03BCg/mg protein) treatment, a maximal effect is observed; the maximal lipid hydrolysis is about 56% and produces 82% reduction in [3H]spiperone binding. Equilibrium binding studies in nontreated and treated membranes showed a reduction in Bmax from a value of 388 ± 9.2 fmol/mg protein before phospholipase treatment to a value of 52 ± 7.8 fmol/mg protein after treatment, but no change in affinity (KD= 0.24 ± 0.042 nM) was observed. Albumin washing of treated membranes removes 47% of lysophosphatidyl-choline produced by phospholipid hydrolysis without recovering [3H]spiperone binding activity. However, the presence of 2.5% albumin during phospholipase A2 action (1.5 03BCg/mg protein) prevents the inhibitory effect of phospholipase on [3H]spiperone binding to the membranes, although 28% of the total membrane phospholipid is hydrolysed. Lysophosphatidylcholine, a product of phospholipid hydrolysis, mimics the phospholipase A2 effect on receptor activity, but the [3H]spiperone binding inhibition can be reversed by washing with 2.5% defatted serum albumin. Addition of microsomal lipids to microsomal membranes pretreated with phospholipase does not restore [3H]spiperone stereospecific binding. It is concluded that the phospholipase-mediated inhibition of [3H]spiperone binding activity results not only from hydrolysis of membrane phospholipids, but also from an alteration of the lipid environment by the end products of phospholipid hydrolysis.
id RCAP_c144c0e848f940ad9a4c912470e6e813
oai_identifier_str oai:estudogeral.uc.pt:10316/8345
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding[3H]Spiperone specific binding by microsomal membranes isolated from sheep caudate nucleus is decreased by trypsin and phospholipase A2 (Vipera russeli), but is insensitive to neuraminidase. The inhibitory effect of phospholipase A2 is correlated with phospholipid hydrolysis. After 15 min of phospholipase (5 03BCg/mg protein) treatment, a maximal effect is observed; the maximal lipid hydrolysis is about 56% and produces 82% reduction in [3H]spiperone binding. Equilibrium binding studies in nontreated and treated membranes showed a reduction in Bmax from a value of 388 ± 9.2 fmol/mg protein before phospholipase treatment to a value of 52 ± 7.8 fmol/mg protein after treatment, but no change in affinity (KD= 0.24 ± 0.042 nM) was observed. Albumin washing of treated membranes removes 47% of lysophosphatidyl-choline produced by phospholipid hydrolysis without recovering [3H]spiperone binding activity. However, the presence of 2.5% albumin during phospholipase A2 action (1.5 03BCg/mg protein) prevents the inhibitory effect of phospholipase on [3H]spiperone binding to the membranes, although 28% of the total membrane phospholipid is hydrolysed. Lysophosphatidylcholine, a product of phospholipid hydrolysis, mimics the phospholipase A2 effect on receptor activity, but the [3H]spiperone binding inhibition can be reversed by washing with 2.5% defatted serum albumin. Addition of microsomal lipids to microsomal membranes pretreated with phospholipase does not restore [3H]spiperone stereospecific binding. It is concluded that the phospholipase-mediated inhibition of [3H]spiperone binding activity results not only from hydrolysis of membrane phospholipids, but also from an alteration of the lipid environment by the end products of phospholipid hydrolysis.1984info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/8345http://hdl.handle.net/10316/8345https://doi.org/10.1111/j.1471-4159.1984.tb00921.xengJournal of Neurochemistry. 43:2 (1984) 455-465Oliveira, C. R.Duarte, E. P.Carvalho, A. P.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-02-23T12:55:37Zoai:estudogeral.uc.pt:10316/8345Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:55:31.877029Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
title Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
spellingShingle Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
Oliveira, C. R.
title_short Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
title_full Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
title_fullStr Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
title_full_unstemmed Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
title_sort Effect of Phospholipase Digestion and Lysophosphatidylcholine on Dopamine Receptor Binding
author Oliveira, C. R.
author_facet Oliveira, C. R.
Duarte, E. P.
Carvalho, A. P.
author_role author
author2 Duarte, E. P.
Carvalho, A. P.
author2_role author
author
dc.contributor.author.fl_str_mv Oliveira, C. R.
Duarte, E. P.
Carvalho, A. P.
description [3H]Spiperone specific binding by microsomal membranes isolated from sheep caudate nucleus is decreased by trypsin and phospholipase A2 (Vipera russeli), but is insensitive to neuraminidase. The inhibitory effect of phospholipase A2 is correlated with phospholipid hydrolysis. After 15 min of phospholipase (5 03BCg/mg protein) treatment, a maximal effect is observed; the maximal lipid hydrolysis is about 56% and produces 82% reduction in [3H]spiperone binding. Equilibrium binding studies in nontreated and treated membranes showed a reduction in Bmax from a value of 388 ± 9.2 fmol/mg protein before phospholipase treatment to a value of 52 ± 7.8 fmol/mg protein after treatment, but no change in affinity (KD= 0.24 ± 0.042 nM) was observed. Albumin washing of treated membranes removes 47% of lysophosphatidyl-choline produced by phospholipid hydrolysis without recovering [3H]spiperone binding activity. However, the presence of 2.5% albumin during phospholipase A2 action (1.5 03BCg/mg protein) prevents the inhibitory effect of phospholipase on [3H]spiperone binding to the membranes, although 28% of the total membrane phospholipid is hydrolysed. Lysophosphatidylcholine, a product of phospholipid hydrolysis, mimics the phospholipase A2 effect on receptor activity, but the [3H]spiperone binding inhibition can be reversed by washing with 2.5% defatted serum albumin. Addition of microsomal lipids to microsomal membranes pretreated with phospholipase does not restore [3H]spiperone stereospecific binding. It is concluded that the phospholipase-mediated inhibition of [3H]spiperone binding activity results not only from hydrolysis of membrane phospholipids, but also from an alteration of the lipid environment by the end products of phospholipid hydrolysis.
publishDate 1984
dc.date.none.fl_str_mv 1984
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/8345
http://hdl.handle.net/10316/8345
https://doi.org/10.1111/j.1471-4159.1984.tb00921.x
url http://hdl.handle.net/10316/8345
https://doi.org/10.1111/j.1471-4159.1984.tb00921.x
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Neurochemistry. 43:2 (1984) 455-465
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133842237292544