Forecasting hourly prices in the portuguese power market with ARIMA models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/2040 |
Resumo: | As power markets became a recent worldwide phenomenon, electricity prices’ forecast is a new subject for investigators. Due to the electricity’s particularities, a power market has some very specific rules that must be understood before one begins its study. This empirical research presents a comparative study between two forecasting methods of the day-ahead hourly electricity prices in the Portuguese power market: a complete hourly time-series analysis and an hour-by-hour approach, each one for a Summer and an Autumn seasons. My purpose is to check if an exhaustive hourly analysis would improve significantly the energy price forecasts accuracy and, if so, would the additional computing time offsets this improvement. As it is common in energy prices empirical research, we use ARIMA models. To select the models on a first stage, the Mincer- Zarnowitz regression was considered. On a second stage, to compare the models and select the best one in terms of predictive ability, the Harvey-Newbold encompassing test was applied. Some evidence was found that, in accordance to Cuaresma et al. (2004), analysing each hour separately produced better results than considering the complete time series, although the time taken to estimate the models can be an issue for short term predictions. The ARIMA models that captured the weekly effect encompassed the others and produced more accurate forecasts. |
id |
RCAP_c155ca1d2b8afb21c33f26ce71cc29af |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/2040 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Forecasting hourly prices in the portuguese power market with ARIMA modelsElectricity MarketTime-series analysisEnergy pricePrice forecastMercado eléctricoAnálise de séries temporaisPreços de energiaPrevisão de preçosAs power markets became a recent worldwide phenomenon, electricity prices’ forecast is a new subject for investigators. Due to the electricity’s particularities, a power market has some very specific rules that must be understood before one begins its study. This empirical research presents a comparative study between two forecasting methods of the day-ahead hourly electricity prices in the Portuguese power market: a complete hourly time-series analysis and an hour-by-hour approach, each one for a Summer and an Autumn seasons. My purpose is to check if an exhaustive hourly analysis would improve significantly the energy price forecasts accuracy and, if so, would the additional computing time offsets this improvement. As it is common in energy prices empirical research, we use ARIMA models. To select the models on a first stage, the Mincer- Zarnowitz regression was considered. On a second stage, to compare the models and select the best one in terms of predictive ability, the Harvey-Newbold encompassing test was applied. Some evidence was found that, in accordance to Cuaresma et al. (2004), analysing each hour separately produced better results than considering the complete time series, although the time taken to estimate the models can be an issue for short term predictions. The ARIMA models that captured the weekly effect encompassed the others and produced more accurate forecasts.Com a transformação dos mercados de electricidade num fenómeno mundial, a previsão de preços de electricidade tornou-se num novo tema de estudo para os investigadores. Devido às particularidades da electricidade, um mercado eléctrico tem regras muito específicas que têm que ser compreendidas antes de se iniciar o seu estudo. Este trabalho experimental apresenta um estudo comparativo entre dois métodos de previsão dos preços horários de electricidade para o dia seguinte: uma análise da série horária completa e uma aproximação hora a hora, cada uma delas para um período de Verão e de Outono. O meu objectivo é verificar se uma análise horária exaustiva melhora significativamente a precisão das previsões dos preços de energia e, caso tal se verifique, se o tempo adicional requerido compensa esta melhoria. Como tem sido comum em estudos empíricos sobre preços de energia, utilizámos modelos ARIMA. Para seleccionar os modelos foi considerada a regressão de Mincer-Zarnowitz numa primeira fase. Num segundo momento, para comparar os modelos e seleccionar o melhor no que respeita à capacidade preditiva, o teste de Harvey-Newbold foi aplicado. Encontrámos evidências de que, de acordo com Cuaresma et al. (2004), analisar cada hora separadamente conduz a melhores resultados do que considerar a série temporal completa, embora o tempo requerido para estimar os modelos seja relevante para previsões de curto-prazo. Os modelos ARIMA que captaram o efeito semanal englobavam os outros e produziram previsões mais precisas.2010-08-26T10:49:38Z2010-08-26T00:00:00Z2010-08-262009info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/2040engDias, António Vasconcellosinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:41:35Zoai:repositorio.iscte-iul.pt:10071/2040Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:19:21.693782Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Forecasting hourly prices in the portuguese power market with ARIMA models |
title |
Forecasting hourly prices in the portuguese power market with ARIMA models |
spellingShingle |
Forecasting hourly prices in the portuguese power market with ARIMA models Dias, António Vasconcellos Electricity Market Time-series analysis Energy price Price forecast Mercado eléctrico Análise de séries temporais Preços de energia Previsão de preços |
title_short |
Forecasting hourly prices in the portuguese power market with ARIMA models |
title_full |
Forecasting hourly prices in the portuguese power market with ARIMA models |
title_fullStr |
Forecasting hourly prices in the portuguese power market with ARIMA models |
title_full_unstemmed |
Forecasting hourly prices in the portuguese power market with ARIMA models |
title_sort |
Forecasting hourly prices in the portuguese power market with ARIMA models |
author |
Dias, António Vasconcellos |
author_facet |
Dias, António Vasconcellos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dias, António Vasconcellos |
dc.subject.por.fl_str_mv |
Electricity Market Time-series analysis Energy price Price forecast Mercado eléctrico Análise de séries temporais Preços de energia Previsão de preços |
topic |
Electricity Market Time-series analysis Energy price Price forecast Mercado eléctrico Análise de séries temporais Preços de energia Previsão de preços |
description |
As power markets became a recent worldwide phenomenon, electricity prices’ forecast is a new subject for investigators. Due to the electricity’s particularities, a power market has some very specific rules that must be understood before one begins its study. This empirical research presents a comparative study between two forecasting methods of the day-ahead hourly electricity prices in the Portuguese power market: a complete hourly time-series analysis and an hour-by-hour approach, each one for a Summer and an Autumn seasons. My purpose is to check if an exhaustive hourly analysis would improve significantly the energy price forecasts accuracy and, if so, would the additional computing time offsets this improvement. As it is common in energy prices empirical research, we use ARIMA models. To select the models on a first stage, the Mincer- Zarnowitz regression was considered. On a second stage, to compare the models and select the best one in terms of predictive ability, the Harvey-Newbold encompassing test was applied. Some evidence was found that, in accordance to Cuaresma et al. (2004), analysing each hour separately produced better results than considering the complete time series, although the time taken to estimate the models can be an issue for short term predictions. The ARIMA models that captured the weekly effect encompassed the others and produced more accurate forecasts. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009 2010-08-26T10:49:38Z 2010-08-26T00:00:00Z 2010-08-26 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/2040 |
url |
http://hdl.handle.net/10071/2040 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/octet-stream |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134753268432896 |