Weighted Hierarchical Grammatical Evolution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.1109/TCYB.2018.2876563 |
Resumo: | Bartoli, A., Castelli, M., & Medvet, E. (2020). Weighted Hierarchical Grammatical Evolution. IEEE Transactions on Cybernetics, 50(2), 476-488. https://doi.org/10.1109/TCYB.2018.2876563 |
id |
RCAP_c1593a38b660e5ced90d9506e1775c67 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/57487 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Weighted Hierarchical Grammatical EvolutionBenchmark testingGenetic programmingGeneticsgenotype-phenotype mappingGrammarIndexingProductionProposalsrepresentationStandardsSoftwareControl and Systems EngineeringInformation SystemsHuman-Computer InteractionComputer Science ApplicationsElectrical and Electronic EngineeringBartoli, A., Castelli, M., & Medvet, E. (2020). Weighted Hierarchical Grammatical Evolution. IEEE Transactions on Cybernetics, 50(2), 476-488. https://doi.org/10.1109/TCYB.2018.2876563Grammatical evolution (GE) is one of the most widespread techniques in evolutionary computation. Genotypes in GE are bit strings while phenotypes are strings, of a language defined by a user-provided context-free grammar. In this paper, we propose a novel procedure for mapping genotypes to phenotypes that we call weighted hierarchical GE (WHGE). WHGE imposes a form of hierarchy on the genotype and encodes grammar symbols with a varying number of bits based on the relative expressive power of those symbols. WHGE does not impose any constraint on the overall GE framework, in particular, WHGE may handle recursive grammars, uses the classical genetic operators, and does not need to define any bound in advance on the size of phenotypes. We assessed experimentally our proposal in depth on a set of challenging and carefully selected benchmarks, comparing the results of the standard GE framework as well as two of the most significant enhancements proposed in the literature: 1) position-independent GE and 2) structured GE. Our results show that WHGE delivers very good results in terms of fitness as well as in terms of the properties of the genotype-phenotype mapping procedure.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBartoli, AlbertoCastelli, MauroMedvet, Eric2019-01-14T23:30:12Z2020-022020-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttps://doi.org/10.1109/TCYB.2018.2876563eng2168-2267PURE: 11258169http://www.scopus.com/inward/record.url?scp=85056325866&partnerID=8YFLogxKhttps://doi.org/10.1109/TCYB.2018.2876563info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:36:30Zoai:run.unl.pt:10362/57487Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:36:30Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Weighted Hierarchical Grammatical Evolution |
title |
Weighted Hierarchical Grammatical Evolution |
spellingShingle |
Weighted Hierarchical Grammatical Evolution Bartoli, Alberto Benchmark testing Genetic programming Genetics genotype-phenotype mapping Grammar Indexing Production Proposals representation Standards Software Control and Systems Engineering Information Systems Human-Computer Interaction Computer Science Applications Electrical and Electronic Engineering |
title_short |
Weighted Hierarchical Grammatical Evolution |
title_full |
Weighted Hierarchical Grammatical Evolution |
title_fullStr |
Weighted Hierarchical Grammatical Evolution |
title_full_unstemmed |
Weighted Hierarchical Grammatical Evolution |
title_sort |
Weighted Hierarchical Grammatical Evolution |
author |
Bartoli, Alberto |
author_facet |
Bartoli, Alberto Castelli, Mauro Medvet, Eric |
author_role |
author |
author2 |
Castelli, Mauro Medvet, Eric |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Bartoli, Alberto Castelli, Mauro Medvet, Eric |
dc.subject.por.fl_str_mv |
Benchmark testing Genetic programming Genetics genotype-phenotype mapping Grammar Indexing Production Proposals representation Standards Software Control and Systems Engineering Information Systems Human-Computer Interaction Computer Science Applications Electrical and Electronic Engineering |
topic |
Benchmark testing Genetic programming Genetics genotype-phenotype mapping Grammar Indexing Production Proposals representation Standards Software Control and Systems Engineering Information Systems Human-Computer Interaction Computer Science Applications Electrical and Electronic Engineering |
description |
Bartoli, A., Castelli, M., & Medvet, E. (2020). Weighted Hierarchical Grammatical Evolution. IEEE Transactions on Cybernetics, 50(2), 476-488. https://doi.org/10.1109/TCYB.2018.2876563 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-14T23:30:12Z 2020-02 2020-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1109/TCYB.2018.2876563 |
url |
https://doi.org/10.1109/TCYB.2018.2876563 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2168-2267 PURE: 11258169 http://www.scopus.com/inward/record.url?scp=85056325866&partnerID=8YFLogxK https://doi.org/10.1109/TCYB.2018.2876563 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545669217353728 |