Weighted Hierarchical Grammatical Evolution

Detalhes bibliográficos
Autor(a) principal: Bartoli, Alberto
Data de Publicação: 2019
Outros Autores: Castelli, Mauro, Medvet, Eric
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://doi.org/10.1109/TCYB.2018.2876563
Resumo: Bartoli, A., Castelli, M., & Medvet, E. (2020). Weighted Hierarchical Grammatical Evolution. IEEE Transactions on Cybernetics, 50(2), 476-488. https://doi.org/10.1109/TCYB.2018.2876563
id RCAP_c1593a38b660e5ced90d9506e1775c67
oai_identifier_str oai:run.unl.pt:10362/57487
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Weighted Hierarchical Grammatical EvolutionBenchmark testingGenetic programmingGeneticsgenotype-phenotype mappingGrammarIndexingProductionProposalsrepresentationStandardsSoftwareControl and Systems EngineeringInformation SystemsHuman-Computer InteractionComputer Science ApplicationsElectrical and Electronic EngineeringBartoli, A., Castelli, M., & Medvet, E. (2020). Weighted Hierarchical Grammatical Evolution. IEEE Transactions on Cybernetics, 50(2), 476-488. https://doi.org/10.1109/TCYB.2018.2876563Grammatical evolution (GE) is one of the most widespread techniques in evolutionary computation. Genotypes in GE are bit strings while phenotypes are strings, of a language defined by a user-provided context-free grammar. In this paper, we propose a novel procedure for mapping genotypes to phenotypes that we call weighted hierarchical GE (WHGE). WHGE imposes a form of hierarchy on the genotype and encodes grammar symbols with a varying number of bits based on the relative expressive power of those symbols. WHGE does not impose any constraint on the overall GE framework, in particular, WHGE may handle recursive grammars, uses the classical genetic operators, and does not need to define any bound in advance on the size of phenotypes. We assessed experimentally our proposal in depth on a set of challenging and carefully selected benchmarks, comparing the results of the standard GE framework as well as two of the most significant enhancements proposed in the literature: 1) position-independent GE and 2) structured GE. Our results show that WHGE delivers very good results in terms of fitness as well as in terms of the properties of the genotype-phenotype mapping procedure.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNBartoli, AlbertoCastelli, MauroMedvet, Eric2019-01-14T23:30:12Z2020-022020-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article13application/pdfhttps://doi.org/10.1109/TCYB.2018.2876563eng2168-2267PURE: 11258169http://www.scopus.com/inward/record.url?scp=85056325866&partnerID=8YFLogxKhttps://doi.org/10.1109/TCYB.2018.2876563info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:36:30Zoai:run.unl.pt:10362/57487Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:36:30Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Weighted Hierarchical Grammatical Evolution
title Weighted Hierarchical Grammatical Evolution
spellingShingle Weighted Hierarchical Grammatical Evolution
Bartoli, Alberto
Benchmark testing
Genetic programming
Genetics
genotype-phenotype mapping
Grammar
Indexing
Production
Proposals
representation
Standards
Software
Control and Systems Engineering
Information Systems
Human-Computer Interaction
Computer Science Applications
Electrical and Electronic Engineering
title_short Weighted Hierarchical Grammatical Evolution
title_full Weighted Hierarchical Grammatical Evolution
title_fullStr Weighted Hierarchical Grammatical Evolution
title_full_unstemmed Weighted Hierarchical Grammatical Evolution
title_sort Weighted Hierarchical Grammatical Evolution
author Bartoli, Alberto
author_facet Bartoli, Alberto
Castelli, Mauro
Medvet, Eric
author_role author
author2 Castelli, Mauro
Medvet, Eric
author2_role author
author
dc.contributor.none.fl_str_mv NOVA Information Management School (NOVA IMS)
Information Management Research Center (MagIC) - NOVA Information Management School
RUN
dc.contributor.author.fl_str_mv Bartoli, Alberto
Castelli, Mauro
Medvet, Eric
dc.subject.por.fl_str_mv Benchmark testing
Genetic programming
Genetics
genotype-phenotype mapping
Grammar
Indexing
Production
Proposals
representation
Standards
Software
Control and Systems Engineering
Information Systems
Human-Computer Interaction
Computer Science Applications
Electrical and Electronic Engineering
topic Benchmark testing
Genetic programming
Genetics
genotype-phenotype mapping
Grammar
Indexing
Production
Proposals
representation
Standards
Software
Control and Systems Engineering
Information Systems
Human-Computer Interaction
Computer Science Applications
Electrical and Electronic Engineering
description Bartoli, A., Castelli, M., & Medvet, E. (2020). Weighted Hierarchical Grammatical Evolution. IEEE Transactions on Cybernetics, 50(2), 476-488. https://doi.org/10.1109/TCYB.2018.2876563
publishDate 2019
dc.date.none.fl_str_mv 2019-01-14T23:30:12Z
2020-02
2020-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1109/TCYB.2018.2876563
url https://doi.org/10.1109/TCYB.2018.2876563
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2168-2267
PURE: 11258169
http://www.scopus.com/inward/record.url?scp=85056325866&partnerID=8YFLogxK
https://doi.org/10.1109/TCYB.2018.2876563
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 13
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545669217353728