Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics

Detalhes bibliográficos
Autor(a) principal: Veiros, Luís
Data de Publicação: 2011
Outros Autores: Gamelas ou Carla A. Gamelas, Carla, Calhorda, Maria José, Romão, Carlos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.26/21980
Resumo: The mechanism of sulfide and sulfoxide oxidation with peroxides (ROOH, R = H, Me), catalyzed by Mo(VI) complexes, was investigated by means of DFT/PBE1PBE calculations. Two different catalytic systems were considered: the first is based on the dioxocyclopentadienyl (Cp) complex CpMoO2Cl (Cp = η5-C5H5), also active as a catalyst for olefin epoxidation, and the second based on MoO2Cl2. The most favorable mechanism in the Cp system is initiated by the O−H activation of the HOOR oxidant, which in the presence of CpMoO2Cl leads to formation of CpMoO(OH)(OOR)Cl. Although this is the active species for olefin epoxidation, an alternative pathway with lower energy is available. With the crucial H-bond assistance of another oxidant molecule, the oxoperoxo complex CpMoO(O2)Cl forms, with release of alcohol ROH as byproduct and a calculated energy barrier below 25 kcal mol−1. The mechanisms unveiled for sulfide to sulfoxide oxidation and for sulfoxide to sulfone oxidation are equivalent in their general features and follow outer-sphere mechanisms with S-nucleophilic attack from a free molecule of substrate (sulfide or sulfoxide) to the peroxide which is activated through Mo−O coordination. The MoO2Cl2 catalyst follows a similar course, calculated from MoO2Cl2(H2O)(H2O2). Again, explicit consideration of one molecule of solvent (water) proved essential to facilitate the H-transfer processes involved in the mechanism. The highest energy barrier calculated (ca. 25 kcal mol−1) corresponds to a H shift from the Oα to the Oβ atom of the coordinated H2O2 molecule, activating Oα for the oxidation reaction and preparing water (H2Oβ) as the future leaving group. The outer-sphere mechanism ends with coordination of the oxidation product.
id RCAP_c189f91908f9b17b5cef9e8228c18193
oai_identifier_str oai:comum.rcaap.pt:10400.26/21980
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. OrganometallicsThe mechanism of sulfide and sulfoxide oxidation with peroxides (ROOH, R = H, Me), catalyzed by Mo(VI) complexes, was investigated by means of DFT/PBE1PBE calculations. Two different catalytic systems were considered: the first is based on the dioxocyclopentadienyl (Cp) complex CpMoO2Cl (Cp = η5-C5H5), also active as a catalyst for olefin epoxidation, and the second based on MoO2Cl2. The most favorable mechanism in the Cp system is initiated by the O−H activation of the HOOR oxidant, which in the presence of CpMoO2Cl leads to formation of CpMoO(OH)(OOR)Cl. Although this is the active species for olefin epoxidation, an alternative pathway with lower energy is available. With the crucial H-bond assistance of another oxidant molecule, the oxoperoxo complex CpMoO(O2)Cl forms, with release of alcohol ROH as byproduct and a calculated energy barrier below 25 kcal mol−1. The mechanisms unveiled for sulfide to sulfoxide oxidation and for sulfoxide to sulfone oxidation are equivalent in their general features and follow outer-sphere mechanisms with S-nucleophilic attack from a free molecule of substrate (sulfide or sulfoxide) to the peroxide which is activated through Mo−O coordination. The MoO2Cl2 catalyst follows a similar course, calculated from MoO2Cl2(H2O)(H2O2). Again, explicit consideration of one molecule of solvent (water) proved essential to facilitate the H-transfer processes involved in the mechanism. The highest energy barrier calculated (ca. 25 kcal mol−1) corresponds to a H shift from the Oα to the Oβ atom of the coordinated H2O2 molecule, activating Oα for the oxidation reaction and preparing water (H2Oβ) as the future leaving group. The outer-sphere mechanism ends with coordination of the oxidation product.Repositório ComumVeiros, LuísGamelas ou Carla A. Gamelas, CarlaCalhorda, Maria JoséRomão, Carlos2018-03-13T14:54:27Z20112011-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/21980engVeiros, L., Gamelas, C., Calhorda, M.J. & Romão, C. (2011). Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics, 30 (6), pp.1454 -1465. doi: 10.1021/om101044fmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-21T09:53:30Zoai:comum.rcaap.pt:10400.26/21980Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:09:22.891098Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
title Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
spellingShingle Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
Veiros, Luís
title_short Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
title_full Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
title_fullStr Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
title_full_unstemmed Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
title_sort Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics
author Veiros, Luís
author_facet Veiros, Luís
Gamelas ou Carla A. Gamelas, Carla
Calhorda, Maria José
Romão, Carlos
author_role author
author2 Gamelas ou Carla A. Gamelas, Carla
Calhorda, Maria José
Romão, Carlos
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório Comum
dc.contributor.author.fl_str_mv Veiros, Luís
Gamelas ou Carla A. Gamelas, Carla
Calhorda, Maria José
Romão, Carlos
description The mechanism of sulfide and sulfoxide oxidation with peroxides (ROOH, R = H, Me), catalyzed by Mo(VI) complexes, was investigated by means of DFT/PBE1PBE calculations. Two different catalytic systems were considered: the first is based on the dioxocyclopentadienyl (Cp) complex CpMoO2Cl (Cp = η5-C5H5), also active as a catalyst for olefin epoxidation, and the second based on MoO2Cl2. The most favorable mechanism in the Cp system is initiated by the O−H activation of the HOOR oxidant, which in the presence of CpMoO2Cl leads to formation of CpMoO(OH)(OOR)Cl. Although this is the active species for olefin epoxidation, an alternative pathway with lower energy is available. With the crucial H-bond assistance of another oxidant molecule, the oxoperoxo complex CpMoO(O2)Cl forms, with release of alcohol ROH as byproduct and a calculated energy barrier below 25 kcal mol−1. The mechanisms unveiled for sulfide to sulfoxide oxidation and for sulfoxide to sulfone oxidation are equivalent in their general features and follow outer-sphere mechanisms with S-nucleophilic attack from a free molecule of substrate (sulfide or sulfoxide) to the peroxide which is activated through Mo−O coordination. The MoO2Cl2 catalyst follows a similar course, calculated from MoO2Cl2(H2O)(H2O2). Again, explicit consideration of one molecule of solvent (water) proved essential to facilitate the H-transfer processes involved in the mechanism. The highest energy barrier calculated (ca. 25 kcal mol−1) corresponds to a H shift from the Oα to the Oβ atom of the coordinated H2O2 molecule, activating Oα for the oxidation reaction and preparing water (H2Oβ) as the future leaving group. The outer-sphere mechanism ends with coordination of the oxidation product.
publishDate 2011
dc.date.none.fl_str_mv 2011
2011-01-01T00:00:00Z
2018-03-13T14:54:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.26/21980
url http://hdl.handle.net/10400.26/21980
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Veiros, L., Gamelas, C., Calhorda, M.J. & Romão, C. (2011). Chemoselective Sulfide and Sulfoxide Oxidations by CpMo(CO)3Cl/HOOR: a DFT Mechanistic Study. Organometallics, 30 (6), pp.1454 -1465. doi: 10.1021/om101044f
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135355464581120