Generating Synthetic Missing Data: A Review by Missing Mechanism

Detalhes bibliográficos
Autor(a) principal: Santos, Miriam Seoane
Data de Publicação: 2019
Outros Autores: Pereira, Ricardo Cardoso, Costa, Adriana Fonseca, Soares, Jastin Pompeu, Santos, Joao, Abreu, Pedro Henriques
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/101583
https://doi.org/10.1109/ACCESS.2019.2891360
Resumo: The performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate con guration) or in several features (multivariate con guration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process de nes the basis for the imputation experiments (con guration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-de ned setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field.
id RCAP_c21d0602ebd600a5afe239c6668a379d
oai_identifier_str oai:estudogeral.uc.pt:10316/101583
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Generating Synthetic Missing Data: A Review by Missing MechanismData preprocessingmissing datamissing data generationmissing data mechanismsThe performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate con guration) or in several features (multivariate con guration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process de nes the basis for the imputation experiments (con guration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-de ned setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field.2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/101583http://hdl.handle.net/10316/101583https://doi.org/10.1109/ACCESS.2019.2891360eng2169-3536Santos, Miriam SeoanePereira, Ricardo CardosoCosta, Adriana FonsecaSoares, Jastin PompeuSantos, JoaoAbreu, Pedro Henriquesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-01T20:46:29Zoai:estudogeral.uc.pt:10316/101583Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:44.674743Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Generating Synthetic Missing Data: A Review by Missing Mechanism
title Generating Synthetic Missing Data: A Review by Missing Mechanism
spellingShingle Generating Synthetic Missing Data: A Review by Missing Mechanism
Santos, Miriam Seoane
Data preprocessing
missing data
missing data generation
missing data mechanisms
title_short Generating Synthetic Missing Data: A Review by Missing Mechanism
title_full Generating Synthetic Missing Data: A Review by Missing Mechanism
title_fullStr Generating Synthetic Missing Data: A Review by Missing Mechanism
title_full_unstemmed Generating Synthetic Missing Data: A Review by Missing Mechanism
title_sort Generating Synthetic Missing Data: A Review by Missing Mechanism
author Santos, Miriam Seoane
author_facet Santos, Miriam Seoane
Pereira, Ricardo Cardoso
Costa, Adriana Fonseca
Soares, Jastin Pompeu
Santos, Joao
Abreu, Pedro Henriques
author_role author
author2 Pereira, Ricardo Cardoso
Costa, Adriana Fonseca
Soares, Jastin Pompeu
Santos, Joao
Abreu, Pedro Henriques
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Santos, Miriam Seoane
Pereira, Ricardo Cardoso
Costa, Adriana Fonseca
Soares, Jastin Pompeu
Santos, Joao
Abreu, Pedro Henriques
dc.subject.por.fl_str_mv Data preprocessing
missing data
missing data generation
missing data mechanisms
topic Data preprocessing
missing data
missing data generation
missing data mechanisms
description The performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate con guration) or in several features (multivariate con guration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process de nes the basis for the imputation experiments (con guration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-de ned setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field.
publishDate 2019
dc.date.none.fl_str_mv 2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/101583
http://hdl.handle.net/10316/101583
https://doi.org/10.1109/ACCESS.2019.2891360
url http://hdl.handle.net/10316/101583
https://doi.org/10.1109/ACCESS.2019.2891360
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2169-3536
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134082181890048