Generating Synthetic Missing Data: A Review by Missing Mechanism
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/101583 https://doi.org/10.1109/ACCESS.2019.2891360 |
Resumo: | The performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate con guration) or in several features (multivariate con guration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process de nes the basis for the imputation experiments (con guration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-de ned setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field. |
id |
RCAP_c21d0602ebd600a5afe239c6668a379d |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/101583 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Generating Synthetic Missing Data: A Review by Missing MechanismData preprocessingmissing datamissing data generationmissing data mechanismsThe performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate con guration) or in several features (multivariate con guration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process de nes the basis for the imputation experiments (con guration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-de ned setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field.2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/101583http://hdl.handle.net/10316/101583https://doi.org/10.1109/ACCESS.2019.2891360eng2169-3536Santos, Miriam SeoanePereira, Ricardo CardosoCosta, Adriana FonsecaSoares, Jastin PompeuSantos, JoaoAbreu, Pedro Henriquesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-01T20:46:29Zoai:estudogeral.uc.pt:10316/101583Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:44.674743Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
title |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
spellingShingle |
Generating Synthetic Missing Data: A Review by Missing Mechanism Santos, Miriam Seoane Data preprocessing missing data missing data generation missing data mechanisms |
title_short |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
title_full |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
title_fullStr |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
title_full_unstemmed |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
title_sort |
Generating Synthetic Missing Data: A Review by Missing Mechanism |
author |
Santos, Miriam Seoane |
author_facet |
Santos, Miriam Seoane Pereira, Ricardo Cardoso Costa, Adriana Fonseca Soares, Jastin Pompeu Santos, Joao Abreu, Pedro Henriques |
author_role |
author |
author2 |
Pereira, Ricardo Cardoso Costa, Adriana Fonseca Soares, Jastin Pompeu Santos, Joao Abreu, Pedro Henriques |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Santos, Miriam Seoane Pereira, Ricardo Cardoso Costa, Adriana Fonseca Soares, Jastin Pompeu Santos, Joao Abreu, Pedro Henriques |
dc.subject.por.fl_str_mv |
Data preprocessing missing data missing data generation missing data mechanisms |
topic |
Data preprocessing missing data missing data generation missing data mechanisms |
description |
The performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate con guration) or in several features (multivariate con guration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process de nes the basis for the imputation experiments (con guration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-de ned setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/101583 http://hdl.handle.net/10316/101583 https://doi.org/10.1109/ACCESS.2019.2891360 |
url |
http://hdl.handle.net/10316/101583 https://doi.org/10.1109/ACCESS.2019.2891360 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2169-3536 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134082181890048 |