Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture

Detalhes bibliográficos
Autor(a) principal: Salgueiro, Vanessa
Data de Publicação: 2020
Outros Autores: Manageiro, Vera, Bandarra, Narcisa M., Reis, Lígia, Ferreira, Eugénia, Caniça, Manuela
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.18/7615
Resumo: In a world where the population continues to increase and the volume of fishing catches stagnates or even falls, the aquaculture sector has great growth potential. This study aimed to contribute to the depth of knowledge of the diversity of bacterial species found in Sparus aurata collected from a fish farm and to understand which profiles of diminished susceptibility to antibiotics would be found in these bacteria that might be disseminated in the environment. One hundred thirty-six bacterial strains were recovered from the S. aurata samples. These strains belonged to Bacillaceae, Bacillales Family XII. Incertae Sedis, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Erwiniaceae, Micrococcaceae, Pseudomonadaceae and Staphylococcaceae families. Enterobacter sp. was more frequently found in gills, intestine and skin groups than in muscle groups (p ≤ 0.01). Antibiotic susceptibility tests found that non-susceptibility to phenicols was significantly higher in gills, intestine and skin samples (45%) than in muscle samples (24%) (p ≤ 0.01) and was the most frequently found non-susceptibility in both groups of samples. The group of Enterobacteriaceae from muscles presented less decreased susceptibility to florfenicol (44%) than in the group of gills, intestine and skin samples (76%). We found decreased susceptibilities to β-lactams and glycopeptides in the Bacillaceae family, to quinolones and mupirocin in the Staphylococcaceae family, and mostly to β-lactams, phenicols and quinolones in the Enterobacteriaceae and Pseudomonadaceae families. Seven Enterobacter spp. and five Pseudomonas spp. strains showed non-susceptibility to ertapenem and meropenem, respectively, which is of concern because they are antibiotics used as a last resort in serious clinical infections. To our knowledge, this is the first description of species Exiguobacterium acetylicum, Klebsiella michiganensis, Lelliottia sp. and Pantoea vagans associated with S. aurata (excluding cases where these bacteria are used as probiotics) and of plasmid-mediated quinolone resistance qnrB19-producing Leclercia adecarboxylata strain. The non-synonymous G385T and C402A mutations at parC gene (within quinolone resistance-determining regions) were also identified in a Klebsiella pneumoniae, revealing decreased susceptibility to ciprofloxacin. In this study, we found not only bacteria from the natural microbiota of fish but also pathogenic bacteria associated with fish and humans. Several antibiotics for which decreased susceptibility was found here are integrated into the World Health Organization list of "critically important antimicrobials" and "highly important antimicrobials" for human medicine.
id RCAP_c23b4ea22357d02f85b3f6e8767eb976
oai_identifier_str oai:repositorio.insa.pt:10400.18/7615
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from AquacultureOne HealthSparus aurataAntibiotic ResistanceAquacultureqnrB19Resistência aos AntimicrobianosIn a world where the population continues to increase and the volume of fishing catches stagnates or even falls, the aquaculture sector has great growth potential. This study aimed to contribute to the depth of knowledge of the diversity of bacterial species found in Sparus aurata collected from a fish farm and to understand which profiles of diminished susceptibility to antibiotics would be found in these bacteria that might be disseminated in the environment. One hundred thirty-six bacterial strains were recovered from the S. aurata samples. These strains belonged to Bacillaceae, Bacillales Family XII. Incertae Sedis, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Erwiniaceae, Micrococcaceae, Pseudomonadaceae and Staphylococcaceae families. Enterobacter sp. was more frequently found in gills, intestine and skin groups than in muscle groups (p ≤ 0.01). Antibiotic susceptibility tests found that non-susceptibility to phenicols was significantly higher in gills, intestine and skin samples (45%) than in muscle samples (24%) (p ≤ 0.01) and was the most frequently found non-susceptibility in both groups of samples. The group of Enterobacteriaceae from muscles presented less decreased susceptibility to florfenicol (44%) than in the group of gills, intestine and skin samples (76%). We found decreased susceptibilities to β-lactams and glycopeptides in the Bacillaceae family, to quinolones and mupirocin in the Staphylococcaceae family, and mostly to β-lactams, phenicols and quinolones in the Enterobacteriaceae and Pseudomonadaceae families. Seven Enterobacter spp. and five Pseudomonas spp. strains showed non-susceptibility to ertapenem and meropenem, respectively, which is of concern because they are antibiotics used as a last resort in serious clinical infections. To our knowledge, this is the first description of species Exiguobacterium acetylicum, Klebsiella michiganensis, Lelliottia sp. and Pantoea vagans associated with S. aurata (excluding cases where these bacteria are used as probiotics) and of plasmid-mediated quinolone resistance qnrB19-producing Leclercia adecarboxylata strain. The non-synonymous G385T and C402A mutations at parC gene (within quinolone resistance-determining regions) were also identified in a Klebsiella pneumoniae, revealing decreased susceptibility to ciprofloxacin. In this study, we found not only bacteria from the natural microbiota of fish but also pathogenic bacteria associated with fish and humans. Several antibiotics for which decreased susceptibility was found here are integrated into the World Health Organization list of "critically important antimicrobials" and "highly important antimicrobials" for human medicine.Vanessa Salgueiro has her Ph.D. fellowship granted by FCT (Fundação para a Ciência e a Tecnologia) with the reference SFRH/BD/133100/2017 co-financed by European Social Fund and the Operational Program for Human Capital (POCH), Portugal.MDPIRepositório Científico do Instituto Nacional de SaúdeSalgueiro, VanessaManageiro, VeraBandarra, Narcisa M.Reis, LígiaFerreira, EugéniaCaniça, Manuela2021-03-31T16:30:12Z2020-09-022020-09-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.18/7615engMicroorganisms. 2020 Sep 2;8(9):1343. doi: 10.3390/microorganisms8091343.2076-260710.3390/microorganisms8091343info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-20T15:42:06Zoai:repositorio.insa.pt:10400.18/7615Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:42:14.699144Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
title Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
spellingShingle Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
Salgueiro, Vanessa
One Health
Sparus aurata
Antibiotic Resistance
Aquaculture
qnrB19
Resistência aos Antimicrobianos
title_short Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
title_full Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
title_fullStr Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
title_full_unstemmed Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
title_sort Bacterial Diversity and Antibiotic Susceptibility of Sparus aurata from Aquaculture
author Salgueiro, Vanessa
author_facet Salgueiro, Vanessa
Manageiro, Vera
Bandarra, Narcisa M.
Reis, Lígia
Ferreira, Eugénia
Caniça, Manuela
author_role author
author2 Manageiro, Vera
Bandarra, Narcisa M.
Reis, Lígia
Ferreira, Eugénia
Caniça, Manuela
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Nacional de Saúde
dc.contributor.author.fl_str_mv Salgueiro, Vanessa
Manageiro, Vera
Bandarra, Narcisa M.
Reis, Lígia
Ferreira, Eugénia
Caniça, Manuela
dc.subject.por.fl_str_mv One Health
Sparus aurata
Antibiotic Resistance
Aquaculture
qnrB19
Resistência aos Antimicrobianos
topic One Health
Sparus aurata
Antibiotic Resistance
Aquaculture
qnrB19
Resistência aos Antimicrobianos
description In a world where the population continues to increase and the volume of fishing catches stagnates or even falls, the aquaculture sector has great growth potential. This study aimed to contribute to the depth of knowledge of the diversity of bacterial species found in Sparus aurata collected from a fish farm and to understand which profiles of diminished susceptibility to antibiotics would be found in these bacteria that might be disseminated in the environment. One hundred thirty-six bacterial strains were recovered from the S. aurata samples. These strains belonged to Bacillaceae, Bacillales Family XII. Incertae Sedis, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Erwiniaceae, Micrococcaceae, Pseudomonadaceae and Staphylococcaceae families. Enterobacter sp. was more frequently found in gills, intestine and skin groups than in muscle groups (p ≤ 0.01). Antibiotic susceptibility tests found that non-susceptibility to phenicols was significantly higher in gills, intestine and skin samples (45%) than in muscle samples (24%) (p ≤ 0.01) and was the most frequently found non-susceptibility in both groups of samples. The group of Enterobacteriaceae from muscles presented less decreased susceptibility to florfenicol (44%) than in the group of gills, intestine and skin samples (76%). We found decreased susceptibilities to β-lactams and glycopeptides in the Bacillaceae family, to quinolones and mupirocin in the Staphylococcaceae family, and mostly to β-lactams, phenicols and quinolones in the Enterobacteriaceae and Pseudomonadaceae families. Seven Enterobacter spp. and five Pseudomonas spp. strains showed non-susceptibility to ertapenem and meropenem, respectively, which is of concern because they are antibiotics used as a last resort in serious clinical infections. To our knowledge, this is the first description of species Exiguobacterium acetylicum, Klebsiella michiganensis, Lelliottia sp. and Pantoea vagans associated with S. aurata (excluding cases where these bacteria are used as probiotics) and of plasmid-mediated quinolone resistance qnrB19-producing Leclercia adecarboxylata strain. The non-synonymous G385T and C402A mutations at parC gene (within quinolone resistance-determining regions) were also identified in a Klebsiella pneumoniae, revealing decreased susceptibility to ciprofloxacin. In this study, we found not only bacteria from the natural microbiota of fish but also pathogenic bacteria associated with fish and humans. Several antibiotics for which decreased susceptibility was found here are integrated into the World Health Organization list of "critically important antimicrobials" and "highly important antimicrobials" for human medicine.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-02
2020-09-02T00:00:00Z
2021-03-31T16:30:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.18/7615
url http://hdl.handle.net/10400.18/7615
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Microorganisms. 2020 Sep 2;8(9):1343. doi: 10.3390/microorganisms8091343.
2076-2607
10.3390/microorganisms8091343
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132167262961664