Isolation forests and deep autoencoders for industrial screw tightening anomaly detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/1822/79806 |
Resumo: | Within the context of Industry 4.0, quality assessment procedures using data-driven techniques are becoming more critical due to the generation of massive amounts of production data. In this paper, we address the detection of abnormal screw tightening processes, which is a key industrial task. Since labeling is costly, requiring a manual effort, we focus on unsupervised detection approaches. In particular, we assume a computationally light low-dimensional problem formulation based on angle–torque pairs. Our work is focused on two unsupervised machine learning (ML) algorithms: isolation forest (IForest) and a deep learning autoencoder (AE). Several computational experiments were held by assuming distinct datasets and a realistic rolling window evaluation procedure. First, we compared the two ML algorithms with two other methods, a local outlier factor method and a supervised Random Forest, on older data related with two production days collected in November 2020. Since competitive results were obtained, during a second stage, we further compared the AE and IForest methods by adopting a more recent and larger dataset (from February to March 2021, totaling 26.9 million observations and related to three distinct assembled products). Both anomaly detection methods obtained an excellent quality class discrimination (higher than 90%) under a realistic rolling window with several training and testing updates. Turning to the computational effort, the AE is much lighter than the IForest for training (around 2.7 times faster) and inference (requiring 3.0 times less computation). This AE property is valuable within this industrial domain since it tends to generate big data. Finally, using the anomaly detection estimates, we developed an interactive visualization tool that provides explainable artificial intelligence (XAI) knowledge for the human operators, helping them to better identify the angle–torque regions associated with screw tightening failures. |
id |
RCAP_c2b8bc920558d80560f66ad2d8ddde07 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/79806 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detectionAutoencoderDeep learningIndustry 4.0Isolation forestOne-class classificationUnsupervised learningScience & TechnologyWithin the context of Industry 4.0, quality assessment procedures using data-driven techniques are becoming more critical due to the generation of massive amounts of production data. In this paper, we address the detection of abnormal screw tightening processes, which is a key industrial task. Since labeling is costly, requiring a manual effort, we focus on unsupervised detection approaches. In particular, we assume a computationally light low-dimensional problem formulation based on angle–torque pairs. Our work is focused on two unsupervised machine learning (ML) algorithms: isolation forest (IForest) and a deep learning autoencoder (AE). Several computational experiments were held by assuming distinct datasets and a realistic rolling window evaluation procedure. First, we compared the two ML algorithms with two other methods, a local outlier factor method and a supervised Random Forest, on older data related with two production days collected in November 2020. Since competitive results were obtained, during a second stage, we further compared the AE and IForest methods by adopting a more recent and larger dataset (from February to March 2021, totaling 26.9 million observations and related to three distinct assembled products). Both anomaly detection methods obtained an excellent quality class discrimination (higher than 90%) under a realistic rolling window with several training and testing updates. Turning to the computational effort, the AE is much lighter than the IForest for training (around 2.7 times faster) and inference (requiring 3.0 times less computation). This AE property is valuable within this industrial domain since it tends to generate big data. Finally, using the anomaly detection estimates, we developed an interactive visualization tool that provides explainable artificial intelligence (XAI) knowledge for the human operators, helping them to better identify the angle–torque regions associated with screw tightening failures.This work is supported by: European Structural and Investment Funds in the FEDER component, through the Operational Competitiveness and Internationalization Programme (COMPETE 2020) [Project n 39479; Funding Reference: POCI-01-0247-FEDER-39479]. The work of Diogo Ribeiro is supported the grant FCT PD/BDE/135105/2017.Multidisciplinary Digital Publishing Institute (MDPI)Universidade do MinhoRibeiro, DiogoMatos, Luís MiguelMoreira, GuilhermePilastri, André LuizCortez, Paulo2022-04-082022-04-08T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/1822/79806engRibeiro, D.; Matos, L.M.; Moreira, G.; Pilastri, A.; Cortez, P. Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection. Computers 2022, 11, 54. https://doi.org/10.3390/computers110400542073-431X2073-431X10.3390/computers1104005454https://www.mdpi.com/2073-431X/11/4/54info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:01:40Zoai:repositorium.sdum.uminho.pt:1822/79806Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T18:51:36.002296Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
title |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
spellingShingle |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection Ribeiro, Diogo Autoencoder Deep learning Industry 4.0 Isolation forest One-class classification Unsupervised learning Science & Technology |
title_short |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
title_full |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
title_fullStr |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
title_full_unstemmed |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
title_sort |
Isolation forests and deep autoencoders for industrial screw tightening anomaly detection |
author |
Ribeiro, Diogo |
author_facet |
Ribeiro, Diogo Matos, Luís Miguel Moreira, Guilherme Pilastri, André Luiz Cortez, Paulo |
author_role |
author |
author2 |
Matos, Luís Miguel Moreira, Guilherme Pilastri, André Luiz Cortez, Paulo |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ribeiro, Diogo Matos, Luís Miguel Moreira, Guilherme Pilastri, André Luiz Cortez, Paulo |
dc.subject.por.fl_str_mv |
Autoencoder Deep learning Industry 4.0 Isolation forest One-class classification Unsupervised learning Science & Technology |
topic |
Autoencoder Deep learning Industry 4.0 Isolation forest One-class classification Unsupervised learning Science & Technology |
description |
Within the context of Industry 4.0, quality assessment procedures using data-driven techniques are becoming more critical due to the generation of massive amounts of production data. In this paper, we address the detection of abnormal screw tightening processes, which is a key industrial task. Since labeling is costly, requiring a manual effort, we focus on unsupervised detection approaches. In particular, we assume a computationally light low-dimensional problem formulation based on angle–torque pairs. Our work is focused on two unsupervised machine learning (ML) algorithms: isolation forest (IForest) and a deep learning autoencoder (AE). Several computational experiments were held by assuming distinct datasets and a realistic rolling window evaluation procedure. First, we compared the two ML algorithms with two other methods, a local outlier factor method and a supervised Random Forest, on older data related with two production days collected in November 2020. Since competitive results were obtained, during a second stage, we further compared the AE and IForest methods by adopting a more recent and larger dataset (from February to March 2021, totaling 26.9 million observations and related to three distinct assembled products). Both anomaly detection methods obtained an excellent quality class discrimination (higher than 90%) under a realistic rolling window with several training and testing updates. Turning to the computational effort, the AE is much lighter than the IForest for training (around 2.7 times faster) and inference (requiring 3.0 times less computation). This AE property is valuable within this industrial domain since it tends to generate big data. Finally, using the anomaly detection estimates, we developed an interactive visualization tool that provides explainable artificial intelligence (XAI) knowledge for the human operators, helping them to better identify the angle–torque regions associated with screw tightening failures. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-08 2022-04-08T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1822/79806 |
url |
https://hdl.handle.net/1822/79806 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ribeiro, D.; Matos, L.M.; Moreira, G.; Pilastri, A.; Cortez, P. Isolation Forests and Deep Autoencoders for Industrial Screw Tightening Anomaly Detection. Computers 2022, 11, 54. https://doi.org/10.3390/computers11040054 2073-431X 2073-431X 10.3390/computers11040054 54 https://www.mdpi.com/2073-431X/11/4/54 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132288935526400 |