A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://doi.org/10.3390/su11030595 |
Resumo: | Santa, F., Henriques, R., Torres-Sospedra, J., & Pebesma, E. (2019). A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments. Sustainability (Switzerland), 11(3), [595]. DOI: 10.3390/su11030595 |
id |
RCAP_c3926f495eb64f0ad91195750f459620 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/59718 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environmentsFunctional principal component analysisHuman activityMultitype spatial point patternsNegative binomial regressionSpatio-temporal statisticsGeography, Planning and DevelopmentRenewable Energy, Sustainability and the EnvironmentManagement, Monitoring, Policy and LawSDG 7 - Affordable and Clean EnergySanta, F., Henriques, R., Torres-Sospedra, J., & Pebesma, E. (2019). A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments. Sustainability (Switzerland), 11(3), [595]. DOI: 10.3390/su11030595An in-depth descriptive approach to the dynamics of the urban population is fundamental as a first step towards promoting effective planning and designing processes in cities. Understanding the behavioral aspects of human activities can contribute to their effective management and control. We present a framework, based on statistical methods, for studying the spatio-temporal distribution of geolocated tweets as a proxy for where and when people carry out their activities. We have evaluated our proposal by analyzing the distribution of collected geolocated tweets over a two-week period in the summer of 2017 in Lisbon, London, and Manhattan. Our proposal considers a negative binomial regression analysis for the time series of counts of tweets as a first step. We further estimate a functional principal component analysis of second-order summary statistics of the hourly spatial point patterns formed by the locations of the tweets. Finally, we find groups of hours with a similar spatial arrangement of places where humans develop their activities through hierarchical clustering over the principal scores. Social media events are found to show strong temporal trends such as seasonal variation due to the hour of the day and the day of the week in addition to autoregressive schemas. We have also identified spatio-temporal patterns of clustering, i.e., groups of hours of the day that present a similar spatial distribution of human activities.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNSanta, FernandoHenriques, RobertoTorres-Sospedra, JoaquínPebesma, Edzer2019-02-05T23:43:30Z2019-01-232019-01-23T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://doi.org/10.3390/su11030595eng2071-1050PURE: 11447667http://www.scopus.com/inward/record.url?scp=85060500301&partnerID=8YFLogxKhttps://doi.org/10.3390/su11030595info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:28:40Zoai:run.unl.pt:10362/59718Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:33:26.148629Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
title |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
spellingShingle |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments Santa, Fernando Functional principal component analysis Human activity Multitype spatial point patterns Negative binomial regression Spatio-temporal statistics Geography, Planning and Development Renewable Energy, Sustainability and the Environment Management, Monitoring, Policy and Law SDG 7 - Affordable and Clean Energy |
title_short |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
title_full |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
title_fullStr |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
title_full_unstemmed |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
title_sort |
A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments |
author |
Santa, Fernando |
author_facet |
Santa, Fernando Henriques, Roberto Torres-Sospedra, Joaquín Pebesma, Edzer |
author_role |
author |
author2 |
Henriques, Roberto Torres-Sospedra, Joaquín Pebesma, Edzer |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Santa, Fernando Henriques, Roberto Torres-Sospedra, Joaquín Pebesma, Edzer |
dc.subject.por.fl_str_mv |
Functional principal component analysis Human activity Multitype spatial point patterns Negative binomial regression Spatio-temporal statistics Geography, Planning and Development Renewable Energy, Sustainability and the Environment Management, Monitoring, Policy and Law SDG 7 - Affordable and Clean Energy |
topic |
Functional principal component analysis Human activity Multitype spatial point patterns Negative binomial regression Spatio-temporal statistics Geography, Planning and Development Renewable Energy, Sustainability and the Environment Management, Monitoring, Policy and Law SDG 7 - Affordable and Clean Energy |
description |
Santa, F., Henriques, R., Torres-Sospedra, J., & Pebesma, E. (2019). A statistical approach for studying the spatio-temporal distribution of geolocated tweets in urban environments. Sustainability (Switzerland), 11(3), [595]. DOI: 10.3390/su11030595 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-05T23:43:30Z 2019-01-23 2019-01-23T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.3390/su11030595 |
url |
https://doi.org/10.3390/su11030595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2071-1050 PURE: 11447667 http://www.scopus.com/inward/record.url?scp=85060500301&partnerID=8YFLogxK https://doi.org/10.3390/su11030595 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137955865952256 |