Complete kappa-reducibility of pseudovarieties of the form DRH
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://repositorio-aberto.up.pt/handle/10216/107439 |
Resumo: | We denote by. the implicit signature that contains the multiplication and the (omega-1)-power. It is proved that for any completely kappa-reducible pseudovariety of groups H, the pseudovariety DRH of all finite semigroups whose regular R-classes are groups in H is completely kappa-reducible as well. The converse also holds. The tools used by Almeida, Costa, and Zeitoun for proving that the pseudovariety of all finite R-trivial monoids is completely kappa-reducible are adapted for the general setting of a pseudovariety of the form DRH. |
id |
RCAP_c3a4b269d2f8e9047aebc8ee053e1e65 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/107439 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Complete kappa-reducibility of pseudovarieties of the form DRHWe denote by. the implicit signature that contains the multiplication and the (omega-1)-power. It is proved that for any completely kappa-reducible pseudovariety of groups H, the pseudovariety DRH of all finite semigroups whose regular R-classes are groups in H is completely kappa-reducible as well. The converse also holds. The tools used by Almeida, Costa, and Zeitoun for proving that the pseudovariety of all finite R-trivial monoids is completely kappa-reducible are adapted for the general setting of a pseudovariety of the form DRH.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/107439eng0218-196710.1142/s0218196717500096Almeida, JBorlido, Cinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:50:04Zoai:repositorio-aberto.up.pt:10216/107439Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:33:17.964358Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Complete kappa-reducibility of pseudovarieties of the form DRH |
title |
Complete kappa-reducibility of pseudovarieties of the form DRH |
spellingShingle |
Complete kappa-reducibility of pseudovarieties of the form DRH Almeida, J |
title_short |
Complete kappa-reducibility of pseudovarieties of the form DRH |
title_full |
Complete kappa-reducibility of pseudovarieties of the form DRH |
title_fullStr |
Complete kappa-reducibility of pseudovarieties of the form DRH |
title_full_unstemmed |
Complete kappa-reducibility of pseudovarieties of the form DRH |
title_sort |
Complete kappa-reducibility of pseudovarieties of the form DRH |
author |
Almeida, J |
author_facet |
Almeida, J Borlido, C |
author_role |
author |
author2 |
Borlido, C |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Almeida, J Borlido, C |
description |
We denote by. the implicit signature that contains the multiplication and the (omega-1)-power. It is proved that for any completely kappa-reducible pseudovariety of groups H, the pseudovariety DRH of all finite semigroups whose regular R-classes are groups in H is completely kappa-reducible as well. The converse also holds. The tools used by Almeida, Costa, and Zeitoun for proving that the pseudovariety of all finite R-trivial monoids is completely kappa-reducible are adapted for the general setting of a pseudovariety of the form DRH. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio-aberto.up.pt/handle/10216/107439 |
url |
https://repositorio-aberto.up.pt/handle/10216/107439 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0218-1967 10.1142/s0218196717500096 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136241468309504 |