Complete kappa-reducibility of pseudovarieties of the form DRH

Detalhes bibliográficos
Autor(a) principal: Almeida, J
Data de Publicação: 2017
Outros Autores: Borlido, C
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://repositorio-aberto.up.pt/handle/10216/107439
Resumo: We denote by. the implicit signature that contains the multiplication and the (omega-1)-power. It is proved that for any completely kappa-reducible pseudovariety of groups H, the pseudovariety DRH of all finite semigroups whose regular R-classes are groups in H is completely kappa-reducible as well. The converse also holds. The tools used by Almeida, Costa, and Zeitoun for proving that the pseudovariety of all finite R-trivial monoids is completely kappa-reducible are adapted for the general setting of a pseudovariety of the form DRH.
id RCAP_c3a4b269d2f8e9047aebc8ee053e1e65
oai_identifier_str oai:repositorio-aberto.up.pt:10216/107439
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Complete kappa-reducibility of pseudovarieties of the form DRHWe denote by. the implicit signature that contains the multiplication and the (omega-1)-power. It is proved that for any completely kappa-reducible pseudovariety of groups H, the pseudovariety DRH of all finite semigroups whose regular R-classes are groups in H is completely kappa-reducible as well. The converse also holds. The tools used by Almeida, Costa, and Zeitoun for proving that the pseudovariety of all finite R-trivial monoids is completely kappa-reducible are adapted for the general setting of a pseudovariety of the form DRH.20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://repositorio-aberto.up.pt/handle/10216/107439eng0218-196710.1142/s0218196717500096Almeida, JBorlido, Cinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:50:04Zoai:repositorio-aberto.up.pt:10216/107439Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:33:17.964358Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Complete kappa-reducibility of pseudovarieties of the form DRH
title Complete kappa-reducibility of pseudovarieties of the form DRH
spellingShingle Complete kappa-reducibility of pseudovarieties of the form DRH
Almeida, J
title_short Complete kappa-reducibility of pseudovarieties of the form DRH
title_full Complete kappa-reducibility of pseudovarieties of the form DRH
title_fullStr Complete kappa-reducibility of pseudovarieties of the form DRH
title_full_unstemmed Complete kappa-reducibility of pseudovarieties of the form DRH
title_sort Complete kappa-reducibility of pseudovarieties of the form DRH
author Almeida, J
author_facet Almeida, J
Borlido, C
author_role author
author2 Borlido, C
author2_role author
dc.contributor.author.fl_str_mv Almeida, J
Borlido, C
description We denote by. the implicit signature that contains the multiplication and the (omega-1)-power. It is proved that for any completely kappa-reducible pseudovariety of groups H, the pseudovariety DRH of all finite semigroups whose regular R-classes are groups in H is completely kappa-reducible as well. The converse also holds. The tools used by Almeida, Costa, and Zeitoun for proving that the pseudovariety of all finite R-trivial monoids is completely kappa-reducible are adapted for the general setting of a pseudovariety of the form DRH.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio-aberto.up.pt/handle/10216/107439
url https://repositorio-aberto.up.pt/handle/10216/107439
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0218-1967
10.1142/s0218196717500096
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136241468309504