Selective MMIE training of hidden Markov models for cardiac arrhythmia classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/17511 |
Resumo: | Centre Algoritmi |
id |
RCAP_c417cfc4260c38ece28f9eef3f83f20a |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/17511 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classificationHidden Markov modelsMMI trainingCardiac arrhythmiaPattern recognitionCentre AlgoritmiThis paper is concerned to the cardiac arrhythmia classification by using Hidden Markov Models. The types of beat being selected are normal (N), premature ventricular contraction (V) which is often precursor of ventricular arrhythmia, and two of the most common class of supra-ventricular arrhythmia (S), named atrial fibrillation (AF) and atrial flutter (AFL). The approach followed in this paper is based on the supposition that atrial fibrillation, atrial flutter and normal beats are morphologically similar except that the former does not exhibit the P wave, while the later exhibits several P waves following the QRS. Regarding to the HMM modelling this can mean that these three classes can be modelled by HMM’s of similar topology and sharing some similar parameters excepting the part of the HMM structure that models the P wave. This paper shows, under that underlying assumption, how this information can be compacted in only one HMM, increasing the classification accuracy by using MMI (Maximum Mutual Information) training, and saving computational resources at run-time decoding. This paper also shows that the similarities among normal, atrial fibrillation and atrial flutter beats, which main difference is the lack or repetitions of the P wave, can be taken into consideration to improve the classifier performance by using MMI training, in a single model/triple class framework, which is similar of having three different models sharing several parameters. The algorithm performance was tested by using the MIT-BIH database. Better performance was obtained comparatively to the case where one different HMM models each class when using MLE (Maximum Likelihood Estimation) training alone.Centre AlgoritmiWorld Association for Chinese Biomedical Engineers (WACBE)Universidade do MinhoLima, C. S.Cardoso, Manuel J.2007-072007-07-01T00:00:00Zconference paperinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/17511enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T04:33:45Zoai:repositorium.sdum.uminho.pt:1822/17511Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T04:33:45Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
title |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
spellingShingle |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification Lima, C. S. Hidden Markov models MMI training Cardiac arrhythmia Pattern recognition |
title_short |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
title_full |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
title_fullStr |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
title_full_unstemmed |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
title_sort |
Selective MMIE training of hidden Markov models for cardiac arrhythmia classification |
author |
Lima, C. S. |
author_facet |
Lima, C. S. Cardoso, Manuel J. |
author_role |
author |
author2 |
Cardoso, Manuel J. |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Lima, C. S. Cardoso, Manuel J. |
dc.subject.por.fl_str_mv |
Hidden Markov models MMI training Cardiac arrhythmia Pattern recognition |
topic |
Hidden Markov models MMI training Cardiac arrhythmia Pattern recognition |
description |
Centre Algoritmi |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-07 2007-07-01T00:00:00Z |
dc.type.driver.fl_str_mv |
conference paper |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/17511 |
url |
http://hdl.handle.net/1822/17511 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
World Association for Chinese Biomedical Engineers (WACBE) |
publisher.none.fl_str_mv |
World Association for Chinese Biomedical Engineers (WACBE) |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544349893787648 |