SmartFarm: Improve sustainability using wireless sensor networks

Detalhes bibliográficos
Autor(a) principal: Cardoso, João Miguel Botas
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/22152
Resumo: Nowadays, the saving of natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. In this topic the Internet of Things has been highlighted, these solutions are characterized by offering robustness and simplicity, while being low cost. In this dissertation was presented the study and development of an automatic irrigation control system for agricultural fields. The developed solution had a wireless sensors and actuators network, based on previous studies at the level of modules and communication protocols used, a mobile application for iOS that offers the user the capability of consulting not only the data collected in real time but also their history and also act in accordance with the data it analyses. In order to adapt the water management, Machine Learning algorithms were studied to predict the best time of day for water administration, of the studied algorithms (Decision Trees, Extreme Gradient Boosting (XGBoost), Random Forest, Neural Networks and Support Vectors Machines) the one that obtained the best results was XGBoost, presenting results of 87.73% of accuracy. Besides the ML solution, a script was also developed to calculate the amount of water needed to manage the fields under analysis. Through the implementation of the system it was possible to realize that the developed solution is effective and can achieve up to 60% of water savings.
id RCAP_c5117ae82ea7f5be94ea7f3673d3892d
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/22152
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling SmartFarm: Improve sustainability using wireless sensor networksInternet of thingsMachine learningAgricultura sustentável -- Sustainable agricultureLoRaSwiftESP32Internet das coisasNowadays, the saving of natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. In this topic the Internet of Things has been highlighted, these solutions are characterized by offering robustness and simplicity, while being low cost. In this dissertation was presented the study and development of an automatic irrigation control system for agricultural fields. The developed solution had a wireless sensors and actuators network, based on previous studies at the level of modules and communication protocols used, a mobile application for iOS that offers the user the capability of consulting not only the data collected in real time but also their history and also act in accordance with the data it analyses. In order to adapt the water management, Machine Learning algorithms were studied to predict the best time of day for water administration, of the studied algorithms (Decision Trees, Extreme Gradient Boosting (XGBoost), Random Forest, Neural Networks and Support Vectors Machines) the one that obtained the best results was XGBoost, presenting results of 87.73% of accuracy. Besides the ML solution, a script was also developed to calculate the amount of water needed to manage the fields under analysis. Through the implementation of the system it was possible to realize that the developed solution is effective and can achieve up to 60% of water savings.Nos tempos que correm, a poupança de recursos naturais é cada vez mais uma preocupação, sendo a escassez de água um facto que se tem verificado em cada vez mais zonas do globo. Uma das principais estratégias utilizadas para contrariar esta tendência é o recurso a novas tecnologias. Neste tópico tem se destacado a Internet das Coisas, sendo estas caracterizadas por oferecerem robustez e simplicidade, sendo ao mesmo tempo de baixo custo. Nesta dissertação foi apresentado o estudo e desenvolvimento de um sistema de controlo automático para rega de campos agrícolas. A solução desenvolvida contou com uma rede de sensores e atuadores wireless, tendo por base estudos anteriores ao nível dos módulos e protocolos de comunicação utilizados, uma aplicação movel para iOS que oferece ao utilizador a possibilidade de consultar os dados coletados em tempo real e o histórico dos mesmos e ainda atuar em conformidade. De forma a adequar a administração de água, foram estudados algoritmos de Machine Learning que prevejam a melhor hora do dia para a administração de água, dos algoritmos estudados (Decision Trees, Extreme Gradient Boosting (XGBoost), Random Forest, Redes Neuronais e Support Vectors Machines) o que obteve melhores resultados foi o XGBoost, apresentando resultados de precisão de 87.73%. Para alem da solução de ML foi também desenvolvido um script que calcule a quantidade de água necessária a administrar ao terreno em analise. Através da implementação do sistema foi possível perceber que a solução desenvolvida é eficaz, conseguindo atingir valores de 60% de poupança de água.2023-12-23T00:00:00Z2020-12-23T00:00:00Z2020-12-232020-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/22152TID:202627527engCardoso, João Miguel Botasinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-24T01:17:57Zoai:repositorio.iscte-iul.pt:10071/22152Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:12:01.446741Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv SmartFarm: Improve sustainability using wireless sensor networks
title SmartFarm: Improve sustainability using wireless sensor networks
spellingShingle SmartFarm: Improve sustainability using wireless sensor networks
Cardoso, João Miguel Botas
Internet of things
Machine learning
Agricultura sustentável -- Sustainable agriculture
LoRa
Swift
ESP32
Internet das coisas
title_short SmartFarm: Improve sustainability using wireless sensor networks
title_full SmartFarm: Improve sustainability using wireless sensor networks
title_fullStr SmartFarm: Improve sustainability using wireless sensor networks
title_full_unstemmed SmartFarm: Improve sustainability using wireless sensor networks
title_sort SmartFarm: Improve sustainability using wireless sensor networks
author Cardoso, João Miguel Botas
author_facet Cardoso, João Miguel Botas
author_role author
dc.contributor.author.fl_str_mv Cardoso, João Miguel Botas
dc.subject.por.fl_str_mv Internet of things
Machine learning
Agricultura sustentável -- Sustainable agriculture
LoRa
Swift
ESP32
Internet das coisas
topic Internet of things
Machine learning
Agricultura sustentável -- Sustainable agriculture
LoRa
Swift
ESP32
Internet das coisas
description Nowadays, the saving of natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. In this topic the Internet of Things has been highlighted, these solutions are characterized by offering robustness and simplicity, while being low cost. In this dissertation was presented the study and development of an automatic irrigation control system for agricultural fields. The developed solution had a wireless sensors and actuators network, based on previous studies at the level of modules and communication protocols used, a mobile application for iOS that offers the user the capability of consulting not only the data collected in real time but also their history and also act in accordance with the data it analyses. In order to adapt the water management, Machine Learning algorithms were studied to predict the best time of day for water administration, of the studied algorithms (Decision Trees, Extreme Gradient Boosting (XGBoost), Random Forest, Neural Networks and Support Vectors Machines) the one that obtained the best results was XGBoost, presenting results of 87.73% of accuracy. Besides the ML solution, a script was also developed to calculate the amount of water needed to manage the fields under analysis. Through the implementation of the system it was possible to realize that the developed solution is effective and can achieve up to 60% of water savings.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-23T00:00:00Z
2020-12-23
2020-11
2023-12-23T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/22152
TID:202627527
url http://hdl.handle.net/10071/22152
identifier_str_mv TID:202627527
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134675190415360