Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans

Detalhes bibliográficos
Autor(a) principal: Ricardo, Elisabete Travassos Araújo
Data de Publicação: 2007
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10216/22064
Resumo: 2. Abstract Several resistance mechanisms are associated to antifungal resistance in pathogenic fungi, namely C. albicans: over-expression of CDR1, CDR2 and MDR1 genes encoding for eflux pumps; alterations in gene expression levels or point mutations in ERG11 gene, encoding for the azoles target enzyme lanosterol 14 - demethylase, associated to ergosterol biosynthesis. The aim of the present work was to uncover the resistance mechanisms in a large group of clinical C. albicans strains, performing phenotypic and gene expression studies. Five control strains and 62 clinical strains of C. albicans were used. Standard protocol from CLSI M27-A2 was used to determine the susceptibility phenotype calculating minimal inhibitory concentration for the antifungals fluconazole, itraconazole and voriconazole, with and without ibuprofen (100µg/ml). Also, reversion by efflux hypothesis was tested by flow cytometry, using as fluorescent marker FUN-1, known as an efflux marker. Next, real time PCR protocols for detection and quantification of the target genes CDR1, CDR2, MDR1 e ERG11, were optimized. Different reaction parameters were tested, to achieve values of efficiency and error obtained from standard curves, according to reference values, to ensure accuracy. ACT1 gene, which encodes for actin was used as normalizing gene for the gene expression levels. Most clinical strains resistant to all tested azoles showed a significant over-expression of CDR1 and specially CDR2 when compared to ERG11; in these strains ibuprofen induced the reversion of resistance and an increase in FUN-1 fluorescence. The 2 strains that did not revert their phenotype, ibuprofen did not increase the fluorescence of cells stained with FUN-1 and gene over-expression was not only for CDR1 and CDR2 but mostly for ERG11 gene. It should be stressed that C. albicans control strain 12-99 with known multiple resistance mechanisms did not revert the resistance phenotype in the presence of ibuprofen. MDR1 expression was not detected in none of the C. albicans clinical strains. Strains with multiple resistance mechanisms did not revert, wich might indicate that ibuprofen could be a potential antifungal efflux blocker. Real Time PCR is easily available and a sensitive method for gene expression studies, and also SYBR Green is acceptable, although being an unspecific marker, when a melting curve is added in each assay.
id RCAP_c59f2c0531f48542ad25a1b91de13006
oai_identifier_str oai:repositorio-aberto.up.pt:10216/22064
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicansMedicina e Oncologia MolecularPorto2. Abstract Several resistance mechanisms are associated to antifungal resistance in pathogenic fungi, namely C. albicans: over-expression of CDR1, CDR2 and MDR1 genes encoding for eflux pumps; alterations in gene expression levels or point mutations in ERG11 gene, encoding for the azoles target enzyme lanosterol 14 - demethylase, associated to ergosterol biosynthesis. The aim of the present work was to uncover the resistance mechanisms in a large group of clinical C. albicans strains, performing phenotypic and gene expression studies. Five control strains and 62 clinical strains of C. albicans were used. Standard protocol from CLSI M27-A2 was used to determine the susceptibility phenotype calculating minimal inhibitory concentration for the antifungals fluconazole, itraconazole and voriconazole, with and without ibuprofen (100µg/ml). Also, reversion by efflux hypothesis was tested by flow cytometry, using as fluorescent marker FUN-1, known as an efflux marker. Next, real time PCR protocols for detection and quantification of the target genes CDR1, CDR2, MDR1 e ERG11, were optimized. Different reaction parameters were tested, to achieve values of efficiency and error obtained from standard curves, according to reference values, to ensure accuracy. ACT1 gene, which encodes for actin was used as normalizing gene for the gene expression levels. Most clinical strains resistant to all tested azoles showed a significant over-expression of CDR1 and specially CDR2 when compared to ERG11; in these strains ibuprofen induced the reversion of resistance and an increase in FUN-1 fluorescence. The 2 strains that did not revert their phenotype, ibuprofen did not increase the fluorescence of cells stained with FUN-1 and gene over-expression was not only for CDR1 and CDR2 but mostly for ERG11 gene. It should be stressed that C. albicans control strain 12-99 with known multiple resistance mechanisms did not revert the resistance phenotype in the presence of ibuprofen. MDR1 expression was not detected in none of the C. albicans clinical strains. Strains with multiple resistance mechanisms did not revert, wich might indicate that ibuprofen could be a potential antifungal efflux blocker. Real Time PCR is easily available and a sensitive method for gene expression studies, and also SYBR Green is acceptable, although being an unspecific marker, when a melting curve is added in each assay.Faculdade de Medicina da Universidade do PortoFMUP20072011-02-07T00:00:00Z2011-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/mswordhttp://hdl.handle.net/10216/22064porRicardo, Elisabete Travassos Araújoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:30:11Zoai:repositorio-aberto.up.pt:10216/22064Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:25:08.256426Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
title Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
spellingShingle Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
Ricardo, Elisabete Travassos Araújo
Medicina e Oncologia Molecular
Porto
title_short Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
title_full Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
title_fullStr Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
title_full_unstemmed Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
title_sort Detecção e quantificação da expressão de genes de resistência aos azoles em Candida albicans
author Ricardo, Elisabete Travassos Araújo
author_facet Ricardo, Elisabete Travassos Araújo
author_role author
dc.contributor.author.fl_str_mv Ricardo, Elisabete Travassos Araújo
dc.subject.por.fl_str_mv Medicina e Oncologia Molecular
Porto
topic Medicina e Oncologia Molecular
Porto
description 2. Abstract Several resistance mechanisms are associated to antifungal resistance in pathogenic fungi, namely C. albicans: over-expression of CDR1, CDR2 and MDR1 genes encoding for eflux pumps; alterations in gene expression levels or point mutations in ERG11 gene, encoding for the azoles target enzyme lanosterol 14 - demethylase, associated to ergosterol biosynthesis. The aim of the present work was to uncover the resistance mechanisms in a large group of clinical C. albicans strains, performing phenotypic and gene expression studies. Five control strains and 62 clinical strains of C. albicans were used. Standard protocol from CLSI M27-A2 was used to determine the susceptibility phenotype calculating minimal inhibitory concentration for the antifungals fluconazole, itraconazole and voriconazole, with and without ibuprofen (100µg/ml). Also, reversion by efflux hypothesis was tested by flow cytometry, using as fluorescent marker FUN-1, known as an efflux marker. Next, real time PCR protocols for detection and quantification of the target genes CDR1, CDR2, MDR1 e ERG11, were optimized. Different reaction parameters were tested, to achieve values of efficiency and error obtained from standard curves, according to reference values, to ensure accuracy. ACT1 gene, which encodes for actin was used as normalizing gene for the gene expression levels. Most clinical strains resistant to all tested azoles showed a significant over-expression of CDR1 and specially CDR2 when compared to ERG11; in these strains ibuprofen induced the reversion of resistance and an increase in FUN-1 fluorescence. The 2 strains that did not revert their phenotype, ibuprofen did not increase the fluorescence of cells stained with FUN-1 and gene over-expression was not only for CDR1 and CDR2 but mostly for ERG11 gene. It should be stressed that C. albicans control strain 12-99 with known multiple resistance mechanisms did not revert the resistance phenotype in the presence of ibuprofen. MDR1 expression was not detected in none of the C. albicans clinical strains. Strains with multiple resistance mechanisms did not revert, wich might indicate that ibuprofen could be a potential antifungal efflux blocker. Real Time PCR is easily available and a sensitive method for gene expression studies, and also SYBR Green is acceptable, although being an unspecific marker, when a melting curve is added in each assay.
publishDate 2007
dc.date.none.fl_str_mv 2007
2011-02-07T00:00:00Z
2011-02-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10216/22064
url http://hdl.handle.net/10216/22064
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/msword
dc.publisher.none.fl_str_mv Faculdade de Medicina da Universidade do Porto
FMUP
publisher.none.fl_str_mv Faculdade de Medicina da Universidade do Porto
FMUP
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136165751685121