Thymus medulla under construction: Time and space oddities

Detalhes bibliográficos
Autor(a) principal: Alves, NL
Data de Publicação: 2016
Outros Autores: Ribeiro, AR
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10216/114502
Resumo: The development of effective T-cell-based immunotherapies to treat infection, cancer, and autoimmunity should incorporate the ground rules that control differentiation of T cells in the thymus. Within the thymus, thymic epithelial cells (TECs) provide microenvironments supportive of the generation and selection of T cells that are responsive to pathogen-derived antigens, and yet tolerant to self-determinants. Defects in TEC differentiation cause syndromes that range from immunodeficiency to autoimmunity, which makes the study of TECs of fundamental and clinical importance to comprehend how immunity and tolerance are balanced. Critical to tolerance induction are medullary thymic epithelial cells (mTECs), which purge autoreactive T cells, or redirect them to a regulatory T-cell lineage. In this issue of the European Journal of Immunology, studies by Baik et al. and Mayer et al. [Eur. J. Immunol. 2016. 46: XXXX-XXXX and 46: XXXX-XXXX]) document novel spatial-temporal singularities in the lineage specification and maintenance of mTECs. While Baik et al. define a developmental checkpoint during mTEC specification in the embryo, Mayer et al. reveal that the generation and maintenance of the adult mTEC compartment is temporally controlled in vivo. The two reports described new developmentally related, but temporally distinct principles that underlie the homeostasis of the thymic medulla across life.
id RCAP_c5a74cfa6e245b593fd7f45fcfac0f24
oai_identifier_str oai:repositorio-aberto.up.pt:10216/114502
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Thymus medulla under construction: Time and space odditiesAutoimmunityCell Differentiation/immunologyEpithelial Cells/immunologyHumansT-Lymphocytes, RegulatoryThymus GlandThe development of effective T-cell-based immunotherapies to treat infection, cancer, and autoimmunity should incorporate the ground rules that control differentiation of T cells in the thymus. Within the thymus, thymic epithelial cells (TECs) provide microenvironments supportive of the generation and selection of T cells that are responsive to pathogen-derived antigens, and yet tolerant to self-determinants. Defects in TEC differentiation cause syndromes that range from immunodeficiency to autoimmunity, which makes the study of TECs of fundamental and clinical importance to comprehend how immunity and tolerance are balanced. Critical to tolerance induction are medullary thymic epithelial cells (mTECs), which purge autoreactive T cells, or redirect them to a regulatory T-cell lineage. In this issue of the European Journal of Immunology, studies by Baik et al. and Mayer et al. [Eur. J. Immunol. 2016. 46: XXXX-XXXX and 46: XXXX-XXXX]) document novel spatial-temporal singularities in the lineage specification and maintenance of mTECs. While Baik et al. define a developmental checkpoint during mTEC specification in the embryo, Mayer et al. reveal that the generation and maintenance of the adult mTEC compartment is temporally controlled in vivo. The two reports described new developmentally related, but temporally distinct principles that underlie the homeostasis of the thymic medulla across life.Wiley-VCH Verlag20162016-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10216/114502eng0014-298010.1002/eji.201646329Alves, NLRibeiro, ARinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T16:05:20Zoai:repositorio-aberto.up.pt:10216/114502Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:37:38.747666Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Thymus medulla under construction: Time and space oddities
title Thymus medulla under construction: Time and space oddities
spellingShingle Thymus medulla under construction: Time and space oddities
Alves, NL
Autoimmunity
Cell Differentiation/immunology
Epithelial Cells/immunology
Humans
T-Lymphocytes, Regulatory
Thymus Gland
title_short Thymus medulla under construction: Time and space oddities
title_full Thymus medulla under construction: Time and space oddities
title_fullStr Thymus medulla under construction: Time and space oddities
title_full_unstemmed Thymus medulla under construction: Time and space oddities
title_sort Thymus medulla under construction: Time and space oddities
author Alves, NL
author_facet Alves, NL
Ribeiro, AR
author_role author
author2 Ribeiro, AR
author2_role author
dc.contributor.author.fl_str_mv Alves, NL
Ribeiro, AR
dc.subject.por.fl_str_mv Autoimmunity
Cell Differentiation/immunology
Epithelial Cells/immunology
Humans
T-Lymphocytes, Regulatory
Thymus Gland
topic Autoimmunity
Cell Differentiation/immunology
Epithelial Cells/immunology
Humans
T-Lymphocytes, Regulatory
Thymus Gland
description The development of effective T-cell-based immunotherapies to treat infection, cancer, and autoimmunity should incorporate the ground rules that control differentiation of T cells in the thymus. Within the thymus, thymic epithelial cells (TECs) provide microenvironments supportive of the generation and selection of T cells that are responsive to pathogen-derived antigens, and yet tolerant to self-determinants. Defects in TEC differentiation cause syndromes that range from immunodeficiency to autoimmunity, which makes the study of TECs of fundamental and clinical importance to comprehend how immunity and tolerance are balanced. Critical to tolerance induction are medullary thymic epithelial cells (mTECs), which purge autoreactive T cells, or redirect them to a regulatory T-cell lineage. In this issue of the European Journal of Immunology, studies by Baik et al. and Mayer et al. [Eur. J. Immunol. 2016. 46: XXXX-XXXX and 46: XXXX-XXXX]) document novel spatial-temporal singularities in the lineage specification and maintenance of mTECs. While Baik et al. define a developmental checkpoint during mTEC specification in the embryo, Mayer et al. reveal that the generation and maintenance of the adult mTEC compartment is temporally controlled in vivo. The two reports described new developmentally related, but temporally distinct principles that underlie the homeostasis of the thymic medulla across life.
publishDate 2016
dc.date.none.fl_str_mv 2016
2016-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10216/114502
url http://hdl.handle.net/10216/114502
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0014-2980
10.1002/eji.201646329
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Wiley-VCH Verlag
publisher.none.fl_str_mv Wiley-VCH Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136283804565504