A multi-process second-order latent growth curve model for subjective well-being

Detalhes bibliográficos
Autor(a) principal: Salgueiro, M. F.
Data de Publicação: 2013
Outros Autores: Smith, P. W. F., Vieira, M. D. T.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://ciencia.iscte-iul.pt/public/pub/id/310
http://hdl.handle.net/10071/9810
Resumo: This article proposes a new approach to modelling longitudinal perceptions of subjective well-being (SWB). Several measures have been proposed in the literature to assess SWB and its determinants. Statistical approaches adopted include ordered probit models, fixed and random effects models and cross-lagged structural equation models. The British Household Panel Survey (BHPS) is a longitudinal national representative survey and contains several measures of SWB. Using BHPS data from 2002 to 2005, this article considers two main latent dimensions of life satisfaction: satisfaction with leisure and satisfaction with material issues. The latent trajectories of these two latent life satisfaction dimensions are simultaneously modeled in Mplus, using a multi-process, second-order latent growth curve model. Significant determinants of leisure and material satisfaction growth trajectories include socio-demographic characteristics, number of children in the household, number of hours worked per week, income and perceived health status.
id RCAP_c5b2874c54a2022fd8c67ff2ca069c92
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/9810
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A multi-process second-order latent growth curve model for subjective well-beingBHPSComplex survey designLatent growth curve modelMulti-process modelSubjective well-beingThis article proposes a new approach to modelling longitudinal perceptions of subjective well-being (SWB). Several measures have been proposed in the literature to assess SWB and its determinants. Statistical approaches adopted include ordered probit models, fixed and random effects models and cross-lagged structural equation models. The British Household Panel Survey (BHPS) is a longitudinal national representative survey and contains several measures of SWB. Using BHPS data from 2002 to 2005, this article considers two main latent dimensions of life satisfaction: satisfaction with leisure and satisfaction with material issues. The latent trajectories of these two latent life satisfaction dimensions are simultaneously modeled in Mplus, using a multi-process, second-order latent growth curve model. Significant determinants of leisure and material satisfaction growth trajectories include socio-demographic characteristics, number of children in the household, number of hours worked per week, income and perceived health status.Springer Verlag2015-09-17T16:06:18Z2013-01-01T00:00:00Z20132015-09-17T16:05:14Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://ciencia.iscte-iul.pt/public/pub/id/310http://hdl.handle.net/10071/9810eng0033-5177Salgueiro, M. F.Smith, P. W. F.Vieira, M. D. T.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:41:08Zoai:repositorio.iscte-iul.pt:10071/9810Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:19:06.902280Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A multi-process second-order latent growth curve model for subjective well-being
title A multi-process second-order latent growth curve model for subjective well-being
spellingShingle A multi-process second-order latent growth curve model for subjective well-being
Salgueiro, M. F.
BHPS
Complex survey design
Latent growth curve model
Multi-process model
Subjective well-being
title_short A multi-process second-order latent growth curve model for subjective well-being
title_full A multi-process second-order latent growth curve model for subjective well-being
title_fullStr A multi-process second-order latent growth curve model for subjective well-being
title_full_unstemmed A multi-process second-order latent growth curve model for subjective well-being
title_sort A multi-process second-order latent growth curve model for subjective well-being
author Salgueiro, M. F.
author_facet Salgueiro, M. F.
Smith, P. W. F.
Vieira, M. D. T.
author_role author
author2 Smith, P. W. F.
Vieira, M. D. T.
author2_role author
author
dc.contributor.author.fl_str_mv Salgueiro, M. F.
Smith, P. W. F.
Vieira, M. D. T.
dc.subject.por.fl_str_mv BHPS
Complex survey design
Latent growth curve model
Multi-process model
Subjective well-being
topic BHPS
Complex survey design
Latent growth curve model
Multi-process model
Subjective well-being
description This article proposes a new approach to modelling longitudinal perceptions of subjective well-being (SWB). Several measures have been proposed in the literature to assess SWB and its determinants. Statistical approaches adopted include ordered probit models, fixed and random effects models and cross-lagged structural equation models. The British Household Panel Survey (BHPS) is a longitudinal national representative survey and contains several measures of SWB. Using BHPS data from 2002 to 2005, this article considers two main latent dimensions of life satisfaction: satisfaction with leisure and satisfaction with material issues. The latent trajectories of these two latent life satisfaction dimensions are simultaneously modeled in Mplus, using a multi-process, second-order latent growth curve model. Significant determinants of leisure and material satisfaction growth trajectories include socio-demographic characteristics, number of children in the household, number of hours worked per week, income and perceived health status.
publishDate 2013
dc.date.none.fl_str_mv 2013-01-01T00:00:00Z
2013
2015-09-17T16:06:18Z
2015-09-17T16:05:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ciencia.iscte-iul.pt/public/pub/id/310
http://hdl.handle.net/10071/9810
url https://ciencia.iscte-iul.pt/public/pub/id/310
http://hdl.handle.net/10071/9810
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0033-5177
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134750612389888