Ecophysiology of Ruditapes decussatus

Detalhes bibliográficos
Autor(a) principal: Sobral, Maria Paula de Oliveira
Data de Publicação: 1995
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/1154
Resumo: The physiological responses of the clam R. decussatus from the Ria Formosa, southern Portugal, were examined in relation to normoxia, hypoxia (11, 6, 3 and 1.2 kPa) and anoxia; acute elevation of temperature (at 20, 27 and 32 °C), and its effect on the resistance to air exposure (at 20, 28 and 35 °C); current velocity (0.6, 3, 8 17, 24 and 36 cm. s-1) and turbidity (10, 100 and 300 mg. l-1 dry weight of particulate matter), and the efficiency of this species in retaining particles of different size (at 10 and 100 mg. l-1); and to copper contamination considering both short-term acute exposure to high levels (0.1-10 mg Cu. l-1) and chronic environmental levels (0.01 mg Cu. l-1). Clearance rates, respiration rates, absorption efficiency and excretion rates were assessed through the physiological energetics in terms of the energy budget and scope for growth (SFG). Stress independent respiration rates (R) and clearance rates (CR) were observed in relation to hypoxia down to 12 kPa and 6 kPa, respectively. Anoxic rates were 3.6 % of normoxic rates. Scope for growth was greatly reduced under extreme hypoxia (14 % of SFG in normoxia). Respiration rate was temperature independent in the range 20-32 °C but the decline in clearance rate resulted in negative SFG at 32 °C. Gaping during air exposure and the maintenance of faster aerobic metabolism led to 100 % mortality in 20 hours at 35 °C, 4 days at 28 °C and 5 days at 20 °C. Low current velocities (≤ 8 cm. s-1) supported high clearance rates. Shear stresses ≥ 0.9 Pa induced sediment movement and disturbed the feeding processes resulting in decreased clearance rates (at 36 cm. s-1, is 10 % of maximum CR). The observed ability of jetting out depleted water at a different level than the one of the inhalant current results is an important adaptation of clams to the slow currents of sheltered environments. Ingestion at high seston concentrations (> 100 mg. l-1) is controled by reducing the amount filtered, lowering CR (to 30 % of CR at low seston loads) and producing pseudofeces. Observed efficient retention of particles (70-100 %) in the range 3 to 8 μm is beneficial when algal cells are diluted by fine silt particles as it is likely to occur in the clams natural environment. R. decussatus in the short term escaped the exposure to copper by valve closure and therefore acute tests are not applicable to adult clams of this species. At environmental levels chronic exposure to copper did not induce lethal effects during the exposure period (20 days), but scope for growth was reduced to c. 30 %, indicating sustained impairment of physiological functions. The sensitivity of the physiological energetics and the integrated scope for growth measurement in assessing stress effects caused by natural environmental factors was highlighted.
id RCAP_c62604e1d46319a6f507e0ff7bd26594
oai_identifier_str oai:run.unl.pt:10362/1154
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Ecophysiology of Ruditapes decussatusAmeijoas - Ria Formosa (Portugal)Ecofisiologia animalEcotoxicologia marinhaRuditapes decussatusTensões ambientaisThe physiological responses of the clam R. decussatus from the Ria Formosa, southern Portugal, were examined in relation to normoxia, hypoxia (11, 6, 3 and 1.2 kPa) and anoxia; acute elevation of temperature (at 20, 27 and 32 °C), and its effect on the resistance to air exposure (at 20, 28 and 35 °C); current velocity (0.6, 3, 8 17, 24 and 36 cm. s-1) and turbidity (10, 100 and 300 mg. l-1 dry weight of particulate matter), and the efficiency of this species in retaining particles of different size (at 10 and 100 mg. l-1); and to copper contamination considering both short-term acute exposure to high levels (0.1-10 mg Cu. l-1) and chronic environmental levels (0.01 mg Cu. l-1). Clearance rates, respiration rates, absorption efficiency and excretion rates were assessed through the physiological energetics in terms of the energy budget and scope for growth (SFG). Stress independent respiration rates (R) and clearance rates (CR) were observed in relation to hypoxia down to 12 kPa and 6 kPa, respectively. Anoxic rates were 3.6 % of normoxic rates. Scope for growth was greatly reduced under extreme hypoxia (14 % of SFG in normoxia). Respiration rate was temperature independent in the range 20-32 °C but the decline in clearance rate resulted in negative SFG at 32 °C. Gaping during air exposure and the maintenance of faster aerobic metabolism led to 100 % mortality in 20 hours at 35 °C, 4 days at 28 °C and 5 days at 20 °C. Low current velocities (≤ 8 cm. s-1) supported high clearance rates. Shear stresses ≥ 0.9 Pa induced sediment movement and disturbed the feeding processes resulting in decreased clearance rates (at 36 cm. s-1, is 10 % of maximum CR). The observed ability of jetting out depleted water at a different level than the one of the inhalant current results is an important adaptation of clams to the slow currents of sheltered environments. Ingestion at high seston concentrations (> 100 mg. l-1) is controled by reducing the amount filtered, lowering CR (to 30 % of CR at low seston loads) and producing pseudofeces. Observed efficient retention of particles (70-100 %) in the range 3 to 8 μm is beneficial when algal cells are diluted by fine silt particles as it is likely to occur in the clams natural environment. R. decussatus in the short term escaped the exposure to copper by valve closure and therefore acute tests are not applicable to adult clams of this species. At environmental levels chronic exposure to copper did not induce lethal effects during the exposure period (20 days), but scope for growth was reduced to c. 30 %, indicating sustained impairment of physiological functions. The sensitivity of the physiological energetics and the integrated scope for growth measurement in assessing stress effects caused by natural environmental factors was highlighted.FCT - UNLWiddows, JohnPaiva, RosaRUNSobral, Maria Paula de Oliveira2008-03-31T16:31:05Z19951995-01-01T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/1154enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:06:09Zoai:run.unl.pt:10362/1154Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:06:09Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Ecophysiology of Ruditapes decussatus
title Ecophysiology of Ruditapes decussatus
spellingShingle Ecophysiology of Ruditapes decussatus
Sobral, Maria Paula de Oliveira
Ameijoas - Ria Formosa (Portugal)
Ecofisiologia animal
Ecotoxicologia marinha
Ruditapes decussatus
Tensões ambientais
title_short Ecophysiology of Ruditapes decussatus
title_full Ecophysiology of Ruditapes decussatus
title_fullStr Ecophysiology of Ruditapes decussatus
title_full_unstemmed Ecophysiology of Ruditapes decussatus
title_sort Ecophysiology of Ruditapes decussatus
author Sobral, Maria Paula de Oliveira
author_facet Sobral, Maria Paula de Oliveira
author_role author
dc.contributor.none.fl_str_mv Widdows, John
Paiva, Rosa
RUN
dc.contributor.author.fl_str_mv Sobral, Maria Paula de Oliveira
dc.subject.por.fl_str_mv Ameijoas - Ria Formosa (Portugal)
Ecofisiologia animal
Ecotoxicologia marinha
Ruditapes decussatus
Tensões ambientais
topic Ameijoas - Ria Formosa (Portugal)
Ecofisiologia animal
Ecotoxicologia marinha
Ruditapes decussatus
Tensões ambientais
description The physiological responses of the clam R. decussatus from the Ria Formosa, southern Portugal, were examined in relation to normoxia, hypoxia (11, 6, 3 and 1.2 kPa) and anoxia; acute elevation of temperature (at 20, 27 and 32 °C), and its effect on the resistance to air exposure (at 20, 28 and 35 °C); current velocity (0.6, 3, 8 17, 24 and 36 cm. s-1) and turbidity (10, 100 and 300 mg. l-1 dry weight of particulate matter), and the efficiency of this species in retaining particles of different size (at 10 and 100 mg. l-1); and to copper contamination considering both short-term acute exposure to high levels (0.1-10 mg Cu. l-1) and chronic environmental levels (0.01 mg Cu. l-1). Clearance rates, respiration rates, absorption efficiency and excretion rates were assessed through the physiological energetics in terms of the energy budget and scope for growth (SFG). Stress independent respiration rates (R) and clearance rates (CR) were observed in relation to hypoxia down to 12 kPa and 6 kPa, respectively. Anoxic rates were 3.6 % of normoxic rates. Scope for growth was greatly reduced under extreme hypoxia (14 % of SFG in normoxia). Respiration rate was temperature independent in the range 20-32 °C but the decline in clearance rate resulted in negative SFG at 32 °C. Gaping during air exposure and the maintenance of faster aerobic metabolism led to 100 % mortality in 20 hours at 35 °C, 4 days at 28 °C and 5 days at 20 °C. Low current velocities (≤ 8 cm. s-1) supported high clearance rates. Shear stresses ≥ 0.9 Pa induced sediment movement and disturbed the feeding processes resulting in decreased clearance rates (at 36 cm. s-1, is 10 % of maximum CR). The observed ability of jetting out depleted water at a different level than the one of the inhalant current results is an important adaptation of clams to the slow currents of sheltered environments. Ingestion at high seston concentrations (> 100 mg. l-1) is controled by reducing the amount filtered, lowering CR (to 30 % of CR at low seston loads) and producing pseudofeces. Observed efficient retention of particles (70-100 %) in the range 3 to 8 μm is beneficial when algal cells are diluted by fine silt particles as it is likely to occur in the clams natural environment. R. decussatus in the short term escaped the exposure to copper by valve closure and therefore acute tests are not applicable to adult clams of this species. At environmental levels chronic exposure to copper did not induce lethal effects during the exposure period (20 days), but scope for growth was reduced to c. 30 %, indicating sustained impairment of physiological functions. The sensitivity of the physiological energetics and the integrated scope for growth measurement in assessing stress effects caused by natural environmental factors was highlighted.
publishDate 1995
dc.date.none.fl_str_mv 1995
1995-01-01T00:00:00Z
2008-03-31T16:31:05Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/1154
url http://hdl.handle.net/10362/1154
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv FCT - UNL
publisher.none.fl_str_mv FCT - UNL
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817545435734081536