Increasing the effectiveness of active learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/121781 |
Resumo: | Fonseca, J., Douzas, G., & Bacao, F. (2021). Increasing the effectiveness of active learning: Introducing artificial data generation in active learning for land use/land cover classification. Remote Sensing, 13(13), 1-20. [2619]. https://doi.org/10.3390/rs13132619 |
id |
RCAP_c638e80e8233b23c0ae57184aecf5870 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/121781 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Increasing the effectiveness of active learningIntroducing artificial data generation in active learning for land use/land cover classificationActive learningArtificial data generationLand use/land cover classificationOversamplingSMOTEEarth and Planetary Sciences(all)SDG 15 - Life on LandFonseca, J., Douzas, G., & Bacao, F. (2021). Increasing the effectiveness of active learning: Introducing artificial data generation in active learning for land use/land cover classification. Remote Sensing, 13(13), 1-20. [2619]. https://doi.org/10.3390/rs13132619In remote sensing, Active Learning (AL) has become an important technique to collect informative ground truth data “on-demand” for supervised classification tasks. Despite its effectiveness, it is still significantly reliant on user interaction, which makes it both expensive and time consuming to implement. Most of the current literature focuses on the optimization of AL by modifying the selection criteria and the classifiers used. Although improvements in these areas will result in more effective data collection, the use of artificial data sources to reduce human–computer interaction remains unexplored. In this paper, we introduce a new component to the typical AL framework, the data generator, a source of artificial data to reduce the amount of user-labeled data required in AL. The implementation of the proposed AL framework is done using Geometric SMOTE as the data generator. We compare the new AL framework to the original one using similar acquisition functions and classifiers over three AL-specific performance metrics in seven benchmark datasets. We show that this modification of the AL framework significantly reduces cost and time requirements for a successful AL implementation in all of the datasets used in the experiment.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNFonseca, JoaoDouzas, GeorgiosBacao, Fernando2021-07-28T23:28:02Z2021-07-012021-07-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article20application/pdfhttp://hdl.handle.net/10362/121781eng2072-4292PURE: 32875378https://doi.org/10.3390/rs13132619info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:03:55Zoai:run.unl.pt:10362/121781Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:44:43.269825Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Increasing the effectiveness of active learning Introducing artificial data generation in active learning for land use/land cover classification |
title |
Increasing the effectiveness of active learning |
spellingShingle |
Increasing the effectiveness of active learning Fonseca, Joao Active learning Artificial data generation Land use/land cover classification Oversampling SMOTE Earth and Planetary Sciences(all) SDG 15 - Life on Land |
title_short |
Increasing the effectiveness of active learning |
title_full |
Increasing the effectiveness of active learning |
title_fullStr |
Increasing the effectiveness of active learning |
title_full_unstemmed |
Increasing the effectiveness of active learning |
title_sort |
Increasing the effectiveness of active learning |
author |
Fonseca, Joao |
author_facet |
Fonseca, Joao Douzas, Georgios Bacao, Fernando |
author_role |
author |
author2 |
Douzas, Georgios Bacao, Fernando |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Fonseca, Joao Douzas, Georgios Bacao, Fernando |
dc.subject.por.fl_str_mv |
Active learning Artificial data generation Land use/land cover classification Oversampling SMOTE Earth and Planetary Sciences(all) SDG 15 - Life on Land |
topic |
Active learning Artificial data generation Land use/land cover classification Oversampling SMOTE Earth and Planetary Sciences(all) SDG 15 - Life on Land |
description |
Fonseca, J., Douzas, G., & Bacao, F. (2021). Increasing the effectiveness of active learning: Introducing artificial data generation in active learning for land use/land cover classification. Remote Sensing, 13(13), 1-20. [2619]. https://doi.org/10.3390/rs13132619 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-28T23:28:02Z 2021-07-01 2021-07-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/121781 |
url |
http://hdl.handle.net/10362/121781 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2072-4292 PURE: 32875378 https://doi.org/10.3390/rs13132619 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
20 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138054055657472 |