New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour

Detalhes bibliográficos
Autor(a) principal: Tejado, Elena
Data de Publicação: 2018
Outros Autores: Dias, Marta, Correia, J.B., Palacios, T., Carvalho, Patricia Almeida, Alves, E., Pastor, Jose Ygnacio
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.9/3075
Resumo: ABSTRACT: The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 degrees C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.
id RCAP_c6b41aecb00a5603090a9a0fd82684ab
oai_identifier_str oai:repositorio.lneg.pt:10400.9/3075
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviourThermal propertiesMechanical propertiesTungstenABSTRACT: The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 degrees C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.ElsevierRepositório do LNEGTejado, ElenaDias, MartaCorreia, J.B.Palacios, T.Carvalho, Patricia AlmeidaAlves, E.Pastor, Jose Ygnacio2018-10-09T15:40:26Z2018-01-01T00:00:00Z2018-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.9/3075engTejado, E.; Dias, M.; Correia, J.B...[et.al.]. - New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour. In: Journal of Nuclear Materials, 2018, Vol. 498, p. 355-3610022-3115info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T12:28:27Zoai:repositorio.lneg.pt:10400.9/3075Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:36:14.127504Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
title New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
spellingShingle New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
Tejado, Elena
Thermal properties
Mechanical properties
Tungsten
title_short New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
title_full New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
title_fullStr New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
title_full_unstemmed New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
title_sort New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour
author Tejado, Elena
author_facet Tejado, Elena
Dias, Marta
Correia, J.B.
Palacios, T.
Carvalho, Patricia Almeida
Alves, E.
Pastor, Jose Ygnacio
author_role author
author2 Dias, Marta
Correia, J.B.
Palacios, T.
Carvalho, Patricia Almeida
Alves, E.
Pastor, Jose Ygnacio
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório do LNEG
dc.contributor.author.fl_str_mv Tejado, Elena
Dias, Marta
Correia, J.B.
Palacios, T.
Carvalho, Patricia Almeida
Alves, E.
Pastor, Jose Ygnacio
dc.subject.por.fl_str_mv Thermal properties
Mechanical properties
Tungsten
topic Thermal properties
Mechanical properties
Tungsten
description ABSTRACT: The combination of tungsten carbide and copper as a thermal barrier could effectively reduce the thermal mismatch between tungsten and copper alloy, which are proposed as base armour and heat sink, respectively, in the divertor of future fusion reactors. Furthermore, since the optimum operating temperature windows for these divertor materials do not overlap, a compatible thermal barrier interlayer between them is required to guarantee a smooth thermal transition, which in addition may mitigate radiation damage. The aim of this work is to study the thermo-mechanical properties of WC-Cu cermets fabricated by hot pressing. Focus is placed on the temperature effect and composition dependence, as the volume fraction of copper varies from 25 to 50 and 75 vol%. To explore this behaviour, fracture experiments are performed within a temperature range from room temperature to 800 degrees C under vacuum. In addition, elastic modulus and thermal expansion coefficient are estimated from these tests. Results reveal a strong dependence of the performance on temperature and on the volume fraction of copper and, surprisingly, a slight percent of Cu (25 vol%) can effectively reduce the large difference in thermal expansion between tungsten and copper alloy, which is a critical point for in service applications. The thermal performance of these materials, together with their mechanical properties could indeed reduce the heat transfer from the PFM to the underlying element while supporting the high thermal stresses of the joint. Thus, the presence of these cermets could allow the reactor to operate above the ductile to brittle transition temperature of tungsten, without compromising the underlying materials.
publishDate 2018
dc.date.none.fl_str_mv 2018-10-09T15:40:26Z
2018-01-01T00:00:00Z
2018-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.9/3075
url http://hdl.handle.net/10400.9/3075
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Tejado, E.; Dias, M.; Correia, J.B...[et.al.]. - New WC-Cu thermal barriers for fusion applications: high temperature mechanical behaviour. In: Journal of Nuclear Materials, 2018, Vol. 498, p. 355-361
0022-3115
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130228083130368