Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor

Detalhes bibliográficos
Autor(a) principal: Oliveira, Catarina S.
Data de Publicação: 2010
Outros Autores: Thalasso, Frédéric, Alves, M. M.
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/33963
Resumo: Aerobic granular sludge has recently become a promising environmental biotechnology process for wastewater treatment. Understanding the aerobic granulation process in all its facets is, therefore, of major importance. In the present work, aerobic granulation of activated sludge was achieved in a sequencing batch airlift reactor (SBAR) fed with acetate as sole carbon source. Aerobic granulation process was followed by the assessment of the biomass kinetics and stoichiometrics through respirometric pulse experiments, and by the assessment of aggregates morphology through image analysis. The SBAR was operated in 4 hour cycles, with 2 minutes settling time that promoted the selection of biomass with a minimum settling velocity of 11 m/h. The average COD removal efficiency was always above 90 %. Biomass concentration increased from 2.4 ± 1.3 g MLVSS/L to 10.4 ± 3.5 g MLVSS/L. Biomass density increased from 3.4 ± 0.3 g/L to a maximum of 15.8 ± 1.4 g/L. Compact aggregates with granular characteristics were identified after 4 days of operation. Average diameter increased from 0.47 ± 0.01 mm to 1.3 ± 0.05 mm (Figure 1). Respirometric experiments were performed to total biomass, and, separately, to aggregates with diameter bigger than 0.25 mm, designated as granular biomass. Stoichiometric results showed a significant difference between the apparent growth yields and the true growth yields of the granular sludge, indicating that granular biomass was storing substrate at a significant extent likely as a response to the alternate feast-famine periods typical in SBR reactors. Substrate affinity constant (KS) of the granules were higher than that of the total biomass, 43.4 and 31.3 h-1 respectively, this was attributed to the substrate diffusion through the granules. The predominance of granular biomass in the reactor was shown respirometrically by the significant contribution of the granular sludge to the total oxygen uptake rate (OUR). This study contributes for a better understanding of the aerobic granulation process, focussing on the kinetic, stoichiometric, and morphological characteristics.
id RCAP_c706e207209a205096cd596a2ae29cc4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/33963
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactorAerobic granulationRespirometryImage analysisAerobic granular sludge has recently become a promising environmental biotechnology process for wastewater treatment. Understanding the aerobic granulation process in all its facets is, therefore, of major importance. In the present work, aerobic granulation of activated sludge was achieved in a sequencing batch airlift reactor (SBAR) fed with acetate as sole carbon source. Aerobic granulation process was followed by the assessment of the biomass kinetics and stoichiometrics through respirometric pulse experiments, and by the assessment of aggregates morphology through image analysis. The SBAR was operated in 4 hour cycles, with 2 minutes settling time that promoted the selection of biomass with a minimum settling velocity of 11 m/h. The average COD removal efficiency was always above 90 %. Biomass concentration increased from 2.4 ± 1.3 g MLVSS/L to 10.4 ± 3.5 g MLVSS/L. Biomass density increased from 3.4 ± 0.3 g/L to a maximum of 15.8 ± 1.4 g/L. Compact aggregates with granular characteristics were identified after 4 days of operation. Average diameter increased from 0.47 ± 0.01 mm to 1.3 ± 0.05 mm (Figure 1). Respirometric experiments were performed to total biomass, and, separately, to aggregates with diameter bigger than 0.25 mm, designated as granular biomass. Stoichiometric results showed a significant difference between the apparent growth yields and the true growth yields of the granular sludge, indicating that granular biomass was storing substrate at a significant extent likely as a response to the alternate feast-famine periods typical in SBR reactors. Substrate affinity constant (KS) of the granules were higher than that of the total biomass, 43.4 and 31.3 h-1 respectively, this was attributed to the substrate diffusion through the granules. The predominance of granular biomass in the reactor was shown respirometrically by the significant contribution of the granular sludge to the total oxygen uptake rate (OUR). This study contributes for a better understanding of the aerobic granulation process, focussing on the kinetic, stoichiometric, and morphological characteristics.Universidade do MinhoOliveira, Catarina S.Thalasso, FrédéricAlves, M. M.2010-042010-04-01T00:00:00Zconference objectinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/1822/33963engOliveira, Catarina S.; Thalasso, Frederic; Alves, M. M., Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor. Water Research Conference 2010. No. P094, Lisbon, Portugal, 11-14 April, 2010.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T05:45:42Zoai:repositorium.sdum.uminho.pt:1822/33963Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T05:45:42Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
title Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
spellingShingle Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
Oliveira, Catarina S.
Aerobic granulation
Respirometry
Image analysis
title_short Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
title_full Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
title_fullStr Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
title_full_unstemmed Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
title_sort Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor
author Oliveira, Catarina S.
author_facet Oliveira, Catarina S.
Thalasso, Frédéric
Alves, M. M.
author_role author
author2 Thalasso, Frédéric
Alves, M. M.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Oliveira, Catarina S.
Thalasso, Frédéric
Alves, M. M.
dc.subject.por.fl_str_mv Aerobic granulation
Respirometry
Image analysis
topic Aerobic granulation
Respirometry
Image analysis
description Aerobic granular sludge has recently become a promising environmental biotechnology process for wastewater treatment. Understanding the aerobic granulation process in all its facets is, therefore, of major importance. In the present work, aerobic granulation of activated sludge was achieved in a sequencing batch airlift reactor (SBAR) fed with acetate as sole carbon source. Aerobic granulation process was followed by the assessment of the biomass kinetics and stoichiometrics through respirometric pulse experiments, and by the assessment of aggregates morphology through image analysis. The SBAR was operated in 4 hour cycles, with 2 minutes settling time that promoted the selection of biomass with a minimum settling velocity of 11 m/h. The average COD removal efficiency was always above 90 %. Biomass concentration increased from 2.4 ± 1.3 g MLVSS/L to 10.4 ± 3.5 g MLVSS/L. Biomass density increased from 3.4 ± 0.3 g/L to a maximum of 15.8 ± 1.4 g/L. Compact aggregates with granular characteristics were identified after 4 days of operation. Average diameter increased from 0.47 ± 0.01 mm to 1.3 ± 0.05 mm (Figure 1). Respirometric experiments were performed to total biomass, and, separately, to aggregates with diameter bigger than 0.25 mm, designated as granular biomass. Stoichiometric results showed a significant difference between the apparent growth yields and the true growth yields of the granular sludge, indicating that granular biomass was storing substrate at a significant extent likely as a response to the alternate feast-famine periods typical in SBR reactors. Substrate affinity constant (KS) of the granules were higher than that of the total biomass, 43.4 and 31.3 h-1 respectively, this was attributed to the substrate diffusion through the granules. The predominance of granular biomass in the reactor was shown respirometrically by the significant contribution of the granular sludge to the total oxygen uptake rate (OUR). This study contributes for a better understanding of the aerobic granulation process, focussing on the kinetic, stoichiometric, and morphological characteristics.
publishDate 2010
dc.date.none.fl_str_mv 2010-04
2010-04-01T00:00:00Z
dc.type.driver.fl_str_mv conference object
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/33963
url http://hdl.handle.net/1822/33963
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Oliveira, Catarina S.; Thalasso, Frederic; Alves, M. M., Kinetic, stoichiometric, and morphological assessment of aerobic granulation in a sequencing batch airlift reactor. Water Research Conference 2010. No. P094, Lisbon, Portugal, 11-14 April, 2010.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817544729886195712