Top data mining tools for the healthcare industry

Detalhes bibliográficos
Autor(a) principal: Santos-Pereira, Judith
Data de Publicação: 2021
Outros Autores: Gruenwald, Le, Bernardino, Jorge
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/100673
https://doi.org/10.1016/j.jksuci.2021.06.002
Resumo: The healthcare industry has become increasingly challenging, requiring retrieval of knowledge from large amounts of complex data to find the best treatments. Several works have suggested the use of Data Mining tools to overcome the challenges; however, none of them has suggested the best tool to do so. To fill this gap, this paper presents a survey of popular open-source data mining tools in which data mining tool selection criteria based on healthcare application requirements is proposed and the best ones using the proposed selection criteria are identified. The following popular open-source data mining tools are assessed: KNIME, R, RapidMiner, Scikit-learn, and Spark. The study shows that KNIME and RapidMiner provide the largest coverage of healthcare data mining requirements
id RCAP_c720662aa43d253afd29fa628676eac8
oai_identifier_str oai:estudogeral.uc.pt:10316/100673
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Top data mining tools for the healthcare industryData miningHealthcareOpen-source data mining toolsThe healthcare industry has become increasingly challenging, requiring retrieval of knowledge from large amounts of complex data to find the best treatments. Several works have suggested the use of Data Mining tools to overcome the challenges; however, none of them has suggested the best tool to do so. To fill this gap, this paper presents a survey of popular open-source data mining tools in which data mining tool selection criteria based on healthcare application requirements is proposed and the best ones using the proposed selection criteria are identified. The following popular open-source data mining tools are assessed: KNIME, R, RapidMiner, Scikit-learn, and Spark. The study shows that KNIME and RapidMiner provide the largest coverage of healthcare data mining requirements2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/100673http://hdl.handle.net/10316/100673https://doi.org/10.1016/j.jksuci.2021.06.002eng13191578Santos-Pereira, JudithGruenwald, LeBernardino, Jorgeinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-07-08T20:38:31Zoai:estudogeral.uc.pt:10316/100673Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:18:00.588453Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Top data mining tools for the healthcare industry
title Top data mining tools for the healthcare industry
spellingShingle Top data mining tools for the healthcare industry
Santos-Pereira, Judith
Data mining
Healthcare
Open-source data mining tools
title_short Top data mining tools for the healthcare industry
title_full Top data mining tools for the healthcare industry
title_fullStr Top data mining tools for the healthcare industry
title_full_unstemmed Top data mining tools for the healthcare industry
title_sort Top data mining tools for the healthcare industry
author Santos-Pereira, Judith
author_facet Santos-Pereira, Judith
Gruenwald, Le
Bernardino, Jorge
author_role author
author2 Gruenwald, Le
Bernardino, Jorge
author2_role author
author
dc.contributor.author.fl_str_mv Santos-Pereira, Judith
Gruenwald, Le
Bernardino, Jorge
dc.subject.por.fl_str_mv Data mining
Healthcare
Open-source data mining tools
topic Data mining
Healthcare
Open-source data mining tools
description The healthcare industry has become increasingly challenging, requiring retrieval of knowledge from large amounts of complex data to find the best treatments. Several works have suggested the use of Data Mining tools to overcome the challenges; however, none of them has suggested the best tool to do so. To fill this gap, this paper presents a survey of popular open-source data mining tools in which data mining tool selection criteria based on healthcare application requirements is proposed and the best ones using the proposed selection criteria are identified. The following popular open-source data mining tools are assessed: KNIME, R, RapidMiner, Scikit-learn, and Spark. The study shows that KNIME and RapidMiner provide the largest coverage of healthcare data mining requirements
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/100673
http://hdl.handle.net/10316/100673
https://doi.org/10.1016/j.jksuci.2021.06.002
url http://hdl.handle.net/10316/100673
https://doi.org/10.1016/j.jksuci.2021.06.002
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 13191578
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134075584249856