Unramified covers and branes on the Hitchin system
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/130402 |
Resumo: | We study the locus of the moduli space of GL(n, C)-Higgs bundles on a curve given by those Higgs bundles obtained by pushforward under a connected unramified cover. We equip these loci with a hyperholomorphic bundle so that they can be viewed as BBB-branes, and we introduce corresponding BAA-branes which can be described via Hecke modifications. We then show how these branes are naturally dual via explicit Fourier-Mukai transform (recall that GL(n, C) is Langlands self dual). It is noteworthy that these branes lie over the singular locus of the Hitchin fibration. As a particular case, our construction describes the behavior under mirror symmetry of the fixed loci for the action of tensorization by a line bundle of order n. These loci play a key role in the work of Hausel and Thaddeus on topological mirror symmetry for Higgs moduli spaces. (C) 2020 Published by Elsevier Inc. |
id |
RCAP_c79b064fb42bd09be7e4ba93217d056d |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/130402 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Unramified covers and branes on the Hitchin systemWe study the locus of the moduli space of GL(n, C)-Higgs bundles on a curve given by those Higgs bundles obtained by pushforward under a connected unramified cover. We equip these loci with a hyperholomorphic bundle so that they can be viewed as BBB-branes, and we introduce corresponding BAA-branes which can be described via Hecke modifications. We then show how these branes are naturally dual via explicit Fourier-Mukai transform (recall that GL(n, C) is Langlands self dual). It is noteworthy that these branes lie over the singular locus of the Hitchin fibration. As a particular case, our construction describes the behavior under mirror symmetry of the fixed loci for the action of tensorization by a line bundle of order n. These loci play a key role in the work of Hausel and Thaddeus on topological mirror symmetry for Higgs moduli spaces. (C) 2020 Published by Elsevier Inc.20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/130402eng0001-870810.1016/j.aim.2020.107493André OliveiraGothen, PBEmilio FrancoAna Peon-Nietoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:37:34Zoai:repositorio-aberto.up.pt:10216/130402Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:05:27.321578Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Unramified covers and branes on the Hitchin system |
title |
Unramified covers and branes on the Hitchin system |
spellingShingle |
Unramified covers and branes on the Hitchin system André Oliveira |
title_short |
Unramified covers and branes on the Hitchin system |
title_full |
Unramified covers and branes on the Hitchin system |
title_fullStr |
Unramified covers and branes on the Hitchin system |
title_full_unstemmed |
Unramified covers and branes on the Hitchin system |
title_sort |
Unramified covers and branes on the Hitchin system |
author |
André Oliveira |
author_facet |
André Oliveira Gothen, PB Emilio Franco Ana Peon-Nieto |
author_role |
author |
author2 |
Gothen, PB Emilio Franco Ana Peon-Nieto |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
André Oliveira Gothen, PB Emilio Franco Ana Peon-Nieto |
description |
We study the locus of the moduli space of GL(n, C)-Higgs bundles on a curve given by those Higgs bundles obtained by pushforward under a connected unramified cover. We equip these loci with a hyperholomorphic bundle so that they can be viewed as BBB-branes, and we introduce corresponding BAA-branes which can be described via Hecke modifications. We then show how these branes are naturally dual via explicit Fourier-Mukai transform (recall that GL(n, C) is Langlands self dual). It is noteworthy that these branes lie over the singular locus of the Hitchin fibration. As a particular case, our construction describes the behavior under mirror symmetry of the fixed loci for the action of tensorization by a line bundle of order n. These loci play a key role in the work of Hausel and Thaddeus on topological mirror symmetry for Higgs moduli spaces. (C) 2020 Published by Elsevier Inc. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/130402 |
url |
https://hdl.handle.net/10216/130402 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0001-8708 10.1016/j.aim.2020.107493 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135978116349952 |