Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/120489 |
Resumo: | Intensive aquaculture practices involve rearing fish at high densities. In these conditions, fish may be exposed to suboptimal dissolved O2 levels with an increased formation of reactive O2 species (ROS) in tissues. Seaweeds (SW) contain biologically active substances with efficient antioxidant capacities. This study evaluated the effects of dietary supplementation of heat-treated SW (5% Gracilaria vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea bream subjected to a hypoxic challenge. 168 fish (104.5 g average weight) were distributed in 24 tanks, in which eight tanks were fed one of three experimental diets for 34 days: (i) a control diet without SW supplementation, (ii) a control diet supplemented with Ulva, or (iii) a control diet with Gracilaria. Thereafter, fish from 12 tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia (1.3 mg O2 l-1) and subsequent recovery normoxia (8.6 mg O2 l-1). Hypoxic fish showed an increase in hematocrit values regardless of dietary treatment. Dietary modulation of the O2-carrying capacity was conspicuous during recovery, as fish fed SW supplemented diets displayed significantly higher haemoglobin concentration than fish fed the control diet. After the challenge, survival rates in both groups of fish fed SW were higher, which was consistent with a decrease in hepatic lipid peroxidation in these groups. Furthermore, the hepatic antioxidant enzyme activities were modulated differently by changes in environmental O2 condition, particularly in sea bream fed the Gracilaria diet. After being subjected to hypoxia, the gene expression of antioxidant enzymes and molecular chaperones in liver and heart were down regulated in sea bream fed SW diets. This study suggests that the antioxidant properties of heat-treated SW may have a protective role against oxidative stress. The nature of these compounds and possible mechanisms implied are currently being investigated. © 2017. Published by The Company of Biologists |
id |
RCAP_c79c9de9cb7e0df3763d31ee94804c2e |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/120489 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata)biological markercatalasechaperoneglutathione peroxidaseglutathione reductaseglutathione transferasehemoglobinhydrocortisonehypoxia inducible factor 1alphalactic acidperoxiredoxin 3peroxiredoxin 5animal experimentanimal tissueaquacultureArticlecontrolled studydiet supplementationGracilariaheart tissueheat treatmenthematocrithemoglobin determinationhypoxialipid peroxidationliver tissuemean corpuscular hemoglobinnonhumanoxidative stressSparus auratasurvival rateUlvaIntensive aquaculture practices involve rearing fish at high densities. In these conditions, fish may be exposed to suboptimal dissolved O2 levels with an increased formation of reactive O2 species (ROS) in tissues. Seaweeds (SW) contain biologically active substances with efficient antioxidant capacities. This study evaluated the effects of dietary supplementation of heat-treated SW (5% Gracilaria vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea bream subjected to a hypoxic challenge. 168 fish (104.5 g average weight) were distributed in 24 tanks, in which eight tanks were fed one of three experimental diets for 34 days: (i) a control diet without SW supplementation, (ii) a control diet supplemented with Ulva, or (iii) a control diet with Gracilaria. Thereafter, fish from 12 tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia (1.3 mg O2 l-1) and subsequent recovery normoxia (8.6 mg O2 l-1). Hypoxic fish showed an increase in hematocrit values regardless of dietary treatment. Dietary modulation of the O2-carrying capacity was conspicuous during recovery, as fish fed SW supplemented diets displayed significantly higher haemoglobin concentration than fish fed the control diet. After the challenge, survival rates in both groups of fish fed SW were higher, which was consistent with a decrease in hepatic lipid peroxidation in these groups. Furthermore, the hepatic antioxidant enzyme activities were modulated differently by changes in environmental O2 condition, particularly in sea bream fed the Gracilaria diet. After being subjected to hypoxia, the gene expression of antioxidant enzymes and molecular chaperones in liver and heart were down regulated in sea bream fed SW diets. This study suggests that the antioxidant properties of heat-treated SW may have a protective role against oxidative stress. The nature of these compounds and possible mechanisms implied are currently being investigated. © 2017. Published by The Company of BiologistsCompany of Biologists20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/120489eng2046639010.1242/bio.024299Magnoni L.J.Martos-Sitcha J.A.Queiroz A.Calduch-Giner J.A.Gonçalves J.F.M.Rocha C.M.R.Abreu H.T.Schrama J.W.Ozorio R.O.A.Perez-Sanchez J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:38:52Zoai:repositorio-aberto.up.pt:10216/120489Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:28:41.021720Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
title |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
spellingShingle |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) Magnoni L.J. biological marker catalase chaperone glutathione peroxidase glutathione reductase glutathione transferase hemoglobin hydrocortisone hypoxia inducible factor 1alpha lactic acid peroxiredoxin 3 peroxiredoxin 5 animal experiment animal tissue aquaculture Article controlled study diet supplementation Gracilaria heart tissue heat treatment hematocrit hemoglobin determination hypoxia lipid peroxidation liver tissue mean corpuscular hemoglobin nonhuman oxidative stress Sparus aurata survival rate Ulva |
title_short |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
title_full |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
title_fullStr |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
title_full_unstemmed |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
title_sort |
Dietary supplementation of heat-treated Gracilaria and Ulva seaweeds enhanced acute hypoxia tolerance in gilthead sea bream (Sparus aurata) |
author |
Magnoni L.J. |
author_facet |
Magnoni L.J. Martos-Sitcha J.A. Queiroz A. Calduch-Giner J.A. Gonçalves J.F.M. Rocha C.M.R. Abreu H.T. Schrama J.W. Ozorio R.O.A. Perez-Sanchez J. |
author_role |
author |
author2 |
Martos-Sitcha J.A. Queiroz A. Calduch-Giner J.A. Gonçalves J.F.M. Rocha C.M.R. Abreu H.T. Schrama J.W. Ozorio R.O.A. Perez-Sanchez J. |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Magnoni L.J. Martos-Sitcha J.A. Queiroz A. Calduch-Giner J.A. Gonçalves J.F.M. Rocha C.M.R. Abreu H.T. Schrama J.W. Ozorio R.O.A. Perez-Sanchez J. |
dc.subject.por.fl_str_mv |
biological marker catalase chaperone glutathione peroxidase glutathione reductase glutathione transferase hemoglobin hydrocortisone hypoxia inducible factor 1alpha lactic acid peroxiredoxin 3 peroxiredoxin 5 animal experiment animal tissue aquaculture Article controlled study diet supplementation Gracilaria heart tissue heat treatment hematocrit hemoglobin determination hypoxia lipid peroxidation liver tissue mean corpuscular hemoglobin nonhuman oxidative stress Sparus aurata survival rate Ulva |
topic |
biological marker catalase chaperone glutathione peroxidase glutathione reductase glutathione transferase hemoglobin hydrocortisone hypoxia inducible factor 1alpha lactic acid peroxiredoxin 3 peroxiredoxin 5 animal experiment animal tissue aquaculture Article controlled study diet supplementation Gracilaria heart tissue heat treatment hematocrit hemoglobin determination hypoxia lipid peroxidation liver tissue mean corpuscular hemoglobin nonhuman oxidative stress Sparus aurata survival rate Ulva |
description |
Intensive aquaculture practices involve rearing fish at high densities. In these conditions, fish may be exposed to suboptimal dissolved O2 levels with an increased formation of reactive O2 species (ROS) in tissues. Seaweeds (SW) contain biologically active substances with efficient antioxidant capacities. This study evaluated the effects of dietary supplementation of heat-treated SW (5% Gracilaria vermiculophylla or 5% Ulva lactuca) on stress bioindicators in sea bream subjected to a hypoxic challenge. 168 fish (104.5 g average weight) were distributed in 24 tanks, in which eight tanks were fed one of three experimental diets for 34 days: (i) a control diet without SW supplementation, (ii) a control diet supplemented with Ulva, or (iii) a control diet with Gracilaria. Thereafter, fish from 12 tanks (n=4 tanks/dietary treatment) were subjected to 24 h hypoxia (1.3 mg O2 l-1) and subsequent recovery normoxia (8.6 mg O2 l-1). Hypoxic fish showed an increase in hematocrit values regardless of dietary treatment. Dietary modulation of the O2-carrying capacity was conspicuous during recovery, as fish fed SW supplemented diets displayed significantly higher haemoglobin concentration than fish fed the control diet. After the challenge, survival rates in both groups of fish fed SW were higher, which was consistent with a decrease in hepatic lipid peroxidation in these groups. Furthermore, the hepatic antioxidant enzyme activities were modulated differently by changes in environmental O2 condition, particularly in sea bream fed the Gracilaria diet. After being subjected to hypoxia, the gene expression of antioxidant enzymes and molecular chaperones in liver and heart were down regulated in sea bream fed SW diets. This study suggests that the antioxidant properties of heat-treated SW may have a protective role against oxidative stress. The nature of these compounds and possible mechanisms implied are currently being investigated. © 2017. Published by The Company of Biologists |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/120489 |
url |
https://hdl.handle.net/10216/120489 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
20466390 10.1242/bio.024299 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Company of Biologists |
publisher.none.fl_str_mv |
Company of Biologists |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136197834964992 |