DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/160549 |
Resumo: | In the last years, deep generative models have become a popular research topic in artificial intelligence. These models are used in a wide range of applications, including synthetic data generation, missing data imputation, image manipulation, autonomous driving, automatic text translation and speech synthesis. In this thesis we implement three generator models capable of generating synthetic data of electrocardiograms already annotated with the locations of the main waves. The first model is a Wasserstein generative adversarial network with multi-generator. The second model is also a Wasserstein generative adversarial network but with a packed discriminator. The third model is a regular variational autoencoder. In order to prove the quality of the models, we used the synthetic data and the real data to solve a practical problem and compared the performance. The results show that the three models are capable of generating quality electrocardiogram data, which can replace the real data with only a slight loss in data authenticity. The variational autoencoder model produced the highest quality electrocardiograms, but the worse labels. However, the annotations can easily be improved manually. The two generative adversarial network based models produced electrocardiograms with similar quality. |
id |
RCAP_c7b9a82346f51fde6b63c552be66501c |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/160549 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATAGenerative ModelsSynthetic DataElectrocardiogramGenerative Adversarial NetworksVariational AutoencoderDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn the last years, deep generative models have become a popular research topic in artificial intelligence. These models are used in a wide range of applications, including synthetic data generation, missing data imputation, image manipulation, autonomous driving, automatic text translation and speech synthesis. In this thesis we implement three generator models capable of generating synthetic data of electrocardiograms already annotated with the locations of the main waves. The first model is a Wasserstein generative adversarial network with multi-generator. The second model is also a Wasserstein generative adversarial network but with a packed discriminator. The third model is a regular variational autoencoder. In order to prove the quality of the models, we used the synthetic data and the real data to solve a practical problem and compared the performance. The results show that the three models are capable of generating quality electrocardiogram data, which can replace the real data with only a slight loss in data authenticity. The variational autoencoder model produced the highest quality electrocardiograms, but the worse labels. However, the annotations can easily be improved manually. The two generative adversarial network based models produced electrocardiograms with similar quality.Nos últimos anos, os modelos geradores tornaram-se um tópico de pesquisa popular no ramo da inteligência artificial. Estes modelos oferecem uma vasta gama de aplicações, incluindo geração de dados sintéticos, imputação de valores em falta, edição de imagem, condução autónoma, tradução automática e geração de som. Nesta tese implementámos três modelos geradores capazes de gerar dados sintéticos de eletrocardiogramas já anotados com as localizações das principais ondas. O primeiro modelo é uma rede adversária geradora de Wasserstein com múltiplos geradores. O segundo modelo é também uma rede adversária geradora de Wasserstein, mas com um discriminador packed. O terceiro modelo é um autocodificador variacional normal. Para comprovar a qualidade dos modelos, usámos os dados sintéticos e dados reais para resolver um problema prático e comparámos o desempenho. Os resultados mostram que os três modelos são capazes de gerar dados de eletrocardiogramas de qualidade, podendo substituir os dados reais com apenas uma pequena perda na sua autenticidade. O autocodificador variacional produziu os eletrocardiogramas com melhor qualidade, mas as piores anotações. No entanto, as anotações podem ser facilmente melhoradas manualmente. Os outros dois modelos produziram eletrocardiogramas de qualidade equivalente.Rodrigues, RuiRUNMoimenta, Mário Paraíso2023-11-27T14:29:30Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160549enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:15Zoai:run.unl.pt:10362/160549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:05.734240Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
title |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
spellingShingle |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA Moimenta, Mário Paraíso Generative Models Synthetic Data Electrocardiogram Generative Adversarial Networks Variational Autoencoder Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
title_short |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
title_full |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
title_fullStr |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
title_full_unstemmed |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
title_sort |
DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA |
author |
Moimenta, Mário Paraíso |
author_facet |
Moimenta, Mário Paraíso |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rodrigues, Rui RUN |
dc.contributor.author.fl_str_mv |
Moimenta, Mário Paraíso |
dc.subject.por.fl_str_mv |
Generative Models Synthetic Data Electrocardiogram Generative Adversarial Networks Variational Autoencoder Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
topic |
Generative Models Synthetic Data Electrocardiogram Generative Adversarial Networks Variational Autoencoder Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática |
description |
In the last years, deep generative models have become a popular research topic in artificial intelligence. These models are used in a wide range of applications, including synthetic data generation, missing data imputation, image manipulation, autonomous driving, automatic text translation and speech synthesis. In this thesis we implement three generator models capable of generating synthetic data of electrocardiograms already annotated with the locations of the main waves. The first model is a Wasserstein generative adversarial network with multi-generator. The second model is also a Wasserstein generative adversarial network but with a packed discriminator. The third model is a regular variational autoencoder. In order to prove the quality of the models, we used the synthetic data and the real data to solve a practical problem and compared the performance. The results show that the three models are capable of generating quality electrocardiogram data, which can replace the real data with only a slight loss in data authenticity. The variational autoencoder model produced the highest quality electrocardiograms, but the worse labels. However, the annotations can easily be improved manually. The two generative adversarial network based models produced electrocardiograms with similar quality. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-02 2022-02-01T00:00:00Z 2023-11-27T14:29:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/160549 |
url |
http://hdl.handle.net/10362/160549 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138162408161280 |