DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA

Detalhes bibliográficos
Autor(a) principal: Moimenta, Mário Paraíso
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/160549
Resumo: In the last years, deep generative models have become a popular research topic in artificial intelligence. These models are used in a wide range of applications, including synthetic data generation, missing data imputation, image manipulation, autonomous driving, automatic text translation and speech synthesis. In this thesis we implement three generator models capable of generating synthetic data of electrocardiograms already annotated with the locations of the main waves. The first model is a Wasserstein generative adversarial network with multi-generator. The second model is also a Wasserstein generative adversarial network but with a packed discriminator. The third model is a regular variational autoencoder. In order to prove the quality of the models, we used the synthetic data and the real data to solve a practical problem and compared the performance. The results show that the three models are capable of generating quality electrocardiogram data, which can replace the real data with only a slight loss in data authenticity. The variational autoencoder model produced the highest quality electrocardiograms, but the worse labels. However, the annotations can easily be improved manually. The two generative adversarial network based models produced electrocardiograms with similar quality.
id RCAP_c7b9a82346f51fde6b63c552be66501c
oai_identifier_str oai:run.unl.pt:10362/160549
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATAGenerative ModelsSynthetic DataElectrocardiogramGenerative Adversarial NetworksVariational AutoencoderDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e InformáticaIn the last years, deep generative models have become a popular research topic in artificial intelligence. These models are used in a wide range of applications, including synthetic data generation, missing data imputation, image manipulation, autonomous driving, automatic text translation and speech synthesis. In this thesis we implement three generator models capable of generating synthetic data of electrocardiograms already annotated with the locations of the main waves. The first model is a Wasserstein generative adversarial network with multi-generator. The second model is also a Wasserstein generative adversarial network but with a packed discriminator. The third model is a regular variational autoencoder. In order to prove the quality of the models, we used the synthetic data and the real data to solve a practical problem and compared the performance. The results show that the three models are capable of generating quality electrocardiogram data, which can replace the real data with only a slight loss in data authenticity. The variational autoencoder model produced the highest quality electrocardiograms, but the worse labels. However, the annotations can easily be improved manually. The two generative adversarial network based models produced electrocardiograms with similar quality.Nos últimos anos, os modelos geradores tornaram-se um tópico de pesquisa popular no ramo da inteligência artificial. Estes modelos oferecem uma vasta gama de aplicações, incluindo geração de dados sintéticos, imputação de valores em falta, edição de imagem, condução autónoma, tradução automática e geração de som. Nesta tese implementámos três modelos geradores capazes de gerar dados sintéticos de eletrocardiogramas já anotados com as localizações das principais ondas. O primeiro modelo é uma rede adversária geradora de Wasserstein com múltiplos geradores. O segundo modelo é também uma rede adversária geradora de Wasserstein, mas com um discriminador packed. O terceiro modelo é um autocodificador variacional normal. Para comprovar a qualidade dos modelos, usámos os dados sintéticos e dados reais para resolver um problema prático e comparámos o desempenho. Os resultados mostram que os três modelos são capazes de gerar dados de eletrocardiogramas de qualidade, podendo substituir os dados reais com apenas uma pequena perda na sua autenticidade. O autocodificador variacional produziu os eletrocardiogramas com melhor qualidade, mas as piores anotações. No entanto, as anotações podem ser facilmente melhoradas manualmente. Os outros dois modelos produziram eletrocardiogramas de qualidade equivalente.Rodrigues, RuiRUNMoimenta, Mário Paraíso2023-11-27T14:29:30Z2022-022022-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/160549enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:43:15Zoai:run.unl.pt:10362/160549Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:58:05.734240Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
title DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
spellingShingle DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
Moimenta, Mário Paraíso
Generative Models
Synthetic Data
Electrocardiogram
Generative Adversarial Networks
Variational Autoencoder
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
title_short DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
title_full DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
title_fullStr DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
title_full_unstemmed DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
title_sort DEEP GENERATIVE MODELS: GENERATING SYNTHETIC ELECTROCARDIOGRAM DATA
author Moimenta, Mário Paraíso
author_facet Moimenta, Mário Paraíso
author_role author
dc.contributor.none.fl_str_mv Rodrigues, Rui
RUN
dc.contributor.author.fl_str_mv Moimenta, Mário Paraíso
dc.subject.por.fl_str_mv Generative Models
Synthetic Data
Electrocardiogram
Generative Adversarial Networks
Variational Autoencoder
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
topic Generative Models
Synthetic Data
Electrocardiogram
Generative Adversarial Networks
Variational Autoencoder
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informática
description In the last years, deep generative models have become a popular research topic in artificial intelligence. These models are used in a wide range of applications, including synthetic data generation, missing data imputation, image manipulation, autonomous driving, automatic text translation and speech synthesis. In this thesis we implement three generator models capable of generating synthetic data of electrocardiograms already annotated with the locations of the main waves. The first model is a Wasserstein generative adversarial network with multi-generator. The second model is also a Wasserstein generative adversarial network but with a packed discriminator. The third model is a regular variational autoencoder. In order to prove the quality of the models, we used the synthetic data and the real data to solve a practical problem and compared the performance. The results show that the three models are capable of generating quality electrocardiogram data, which can replace the real data with only a slight loss in data authenticity. The variational autoencoder model produced the highest quality electrocardiograms, but the worse labels. However, the annotations can easily be improved manually. The two generative adversarial network based models produced electrocardiograms with similar quality.
publishDate 2022
dc.date.none.fl_str_mv 2022-02
2022-02-01T00:00:00Z
2023-11-27T14:29:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/160549
url http://hdl.handle.net/10362/160549
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138162408161280