Reordenação de documentos através de técnicas de aprendizagem automática

Detalhes bibliográficos
Autor(a) principal: Torres, Ricardo António de Oliveira
Data de Publicação: 2014
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/13677
Resumo: Sistemas de gestão documental e de recuperação de informação são hoje ferramentas essenciais para aceder aos grandes volumes de informação disponíveis. O exemplo mais popular deste cenário é o motor de pesquisa Google, que se estimava possuir cerca de 45 milhares de milhões de páginas Web, em Março de 2013 [14]. Uma vez que a maioria das pessoas, apenas consultam os primeiros dez resultados duma pesquisa, torna-se crucial conseguir uma boa ordenação das respostas, de forma a permitir que o utilizador veja os resultados contendo informação diversificada, de acordo com as suas preferências e indo ao encontro daquilo que escreveu na pesquisa. Além do objetivo de ordenação segundo a query escrita pelo utilizador, também foi tido como objetivo a remoção de documentos similares do topo dos resultados das pesquisas. Nesta tese, pretendemos investigar o uso de algoritmos de aprendizagem de ordenação de resultados, por forma a aumentar a qualidade dos resultados de topo das pesquisas e analisar algumas maneiras para aumentar a diversidade de informação no topo dos resultados das pesquisas. Uma aplicação foi desenvolvida no contexto desta tese e foi aplicada a um sistema de pesquisa que foi desenvolvido em contexto empresarial com a Quidgest S.A, sendo que posteriormente irá ser integrada numa plataforma de desenvolvimento rápido de aplicações.
id RCAP_c7d806c2740c8fd98b39d97c7dae1c2f
oai_identifier_str oai:run.unl.pt:10362/13677
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Reordenação de documentos através de técnicas de aprendizagem automáticaReordenação de documentosCaracterísticas de aprendizagemDiversidadeSimilaridade de documentosAlgoritmos de aprendizagem automáticaSistemas de gestão documental e de recuperação de informação são hoje ferramentas essenciais para aceder aos grandes volumes de informação disponíveis. O exemplo mais popular deste cenário é o motor de pesquisa Google, que se estimava possuir cerca de 45 milhares de milhões de páginas Web, em Março de 2013 [14]. Uma vez que a maioria das pessoas, apenas consultam os primeiros dez resultados duma pesquisa, torna-se crucial conseguir uma boa ordenação das respostas, de forma a permitir que o utilizador veja os resultados contendo informação diversificada, de acordo com as suas preferências e indo ao encontro daquilo que escreveu na pesquisa. Além do objetivo de ordenação segundo a query escrita pelo utilizador, também foi tido como objetivo a remoção de documentos similares do topo dos resultados das pesquisas. Nesta tese, pretendemos investigar o uso de algoritmos de aprendizagem de ordenação de resultados, por forma a aumentar a qualidade dos resultados de topo das pesquisas e analisar algumas maneiras para aumentar a diversidade de informação no topo dos resultados das pesquisas. Uma aplicação foi desenvolvida no contexto desta tese e foi aplicada a um sistema de pesquisa que foi desenvolvido em contexto empresarial com a Quidgest S.A, sendo que posteriormente irá ser integrada numa plataforma de desenvolvimento rápido de aplicações.Magalhães, JoãoRUNTorres, Ricardo António de Oliveira2014-11-11T16:50:38Z2014-032014-112014-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/13677porinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T03:48:24Zoai:run.unl.pt:10362/13677Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:21:21.104428Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Reordenação de documentos através de técnicas de aprendizagem automática
title Reordenação de documentos através de técnicas de aprendizagem automática
spellingShingle Reordenação de documentos através de técnicas de aprendizagem automática
Torres, Ricardo António de Oliveira
Reordenação de documentos
Características de aprendizagem
Diversidade
Similaridade de documentos
Algoritmos de aprendizagem automática
title_short Reordenação de documentos através de técnicas de aprendizagem automática
title_full Reordenação de documentos através de técnicas de aprendizagem automática
title_fullStr Reordenação de documentos através de técnicas de aprendizagem automática
title_full_unstemmed Reordenação de documentos através de técnicas de aprendizagem automática
title_sort Reordenação de documentos através de técnicas de aprendizagem automática
author Torres, Ricardo António de Oliveira
author_facet Torres, Ricardo António de Oliveira
author_role author
dc.contributor.none.fl_str_mv Magalhães, João
RUN
dc.contributor.author.fl_str_mv Torres, Ricardo António de Oliveira
dc.subject.por.fl_str_mv Reordenação de documentos
Características de aprendizagem
Diversidade
Similaridade de documentos
Algoritmos de aprendizagem automática
topic Reordenação de documentos
Características de aprendizagem
Diversidade
Similaridade de documentos
Algoritmos de aprendizagem automática
description Sistemas de gestão documental e de recuperação de informação são hoje ferramentas essenciais para aceder aos grandes volumes de informação disponíveis. O exemplo mais popular deste cenário é o motor de pesquisa Google, que se estimava possuir cerca de 45 milhares de milhões de páginas Web, em Março de 2013 [14]. Uma vez que a maioria das pessoas, apenas consultam os primeiros dez resultados duma pesquisa, torna-se crucial conseguir uma boa ordenação das respostas, de forma a permitir que o utilizador veja os resultados contendo informação diversificada, de acordo com as suas preferências e indo ao encontro daquilo que escreveu na pesquisa. Além do objetivo de ordenação segundo a query escrita pelo utilizador, também foi tido como objetivo a remoção de documentos similares do topo dos resultados das pesquisas. Nesta tese, pretendemos investigar o uso de algoritmos de aprendizagem de ordenação de resultados, por forma a aumentar a qualidade dos resultados de topo das pesquisas e analisar algumas maneiras para aumentar a diversidade de informação no topo dos resultados das pesquisas. Uma aplicação foi desenvolvida no contexto desta tese e foi aplicada a um sistema de pesquisa que foi desenvolvido em contexto empresarial com a Quidgest S.A, sendo que posteriormente irá ser integrada numa plataforma de desenvolvimento rápido de aplicações.
publishDate 2014
dc.date.none.fl_str_mv 2014-11-11T16:50:38Z
2014-03
2014-11
2014-03-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/13677
url http://hdl.handle.net/10362/13677
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137854072291329