Signal Processing for NDE

Detalhes bibliográficos
Autor(a) principal: Masoud Vejdannik
Data de Publicação: 2018
Outros Autores: Ali Sadr, Victor Hugo C. de Albuquerque, João Manuel R. S. Tavares
Tipo de documento: Livro
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/114528
Resumo: Nowadays, testing and evaluating of industrial equipment using nondestructive tests, is a fundamental step in the manufacturing process. The complexity and high costs of manufacturing industrial components, require examinations in some way about the quality and reliability of the specimens. However, it should be noted, that in order to accurately perform the nondestructive test, in addition to theoretical knowledge, it is also essential to have the experience and carefulness, which requires special courses and experience with theoretical education. Therefore, in the traditional methods, which are based on manual testing techniques and the test results depend on the operator, there is the possibility of an invalid inference from the test data. In other words, the accuracy of conclusion from the obtained data is dependent on the skill and experience of the operator. Thus, using the signal processing techniques for nondestructive evaluation (NDE), it is possible to optimize the methods of nondestructive inspection, and in other words, to improve the overall system performance, in terms of reliability and system implementation costs. In recent years, intelligent signal processing techniques have had a significant impact on the progress of nondestructive assessment. In other words, by automating the processing of nondestructive data and signals, and using the artificial intelligence methods, it is possible to optimize nondestructive inspection methods. Hence, improve overall system performance in terms of reliability and Implementation costs of the system. This chapter reviews the issues of intelligent processing of nondestructive testing (NDT) signals.
id RCAP_c8b76ee2887433bf70fc635e321f68d5
oai_identifier_str oai:repositorio-aberto.up.pt:10216/114528
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Signal Processing for NDECiências Tecnológicas, Ciências da engenharia e tecnologiasTechnological sciences, Engineering and technologyNowadays, testing and evaluating of industrial equipment using nondestructive tests, is a fundamental step in the manufacturing process. The complexity and high costs of manufacturing industrial components, require examinations in some way about the quality and reliability of the specimens. However, it should be noted, that in order to accurately perform the nondestructive test, in addition to theoretical knowledge, it is also essential to have the experience and carefulness, which requires special courses and experience with theoretical education. Therefore, in the traditional methods, which are based on manual testing techniques and the test results depend on the operator, there is the possibility of an invalid inference from the test data. In other words, the accuracy of conclusion from the obtained data is dependent on the skill and experience of the operator. Thus, using the signal processing techniques for nondestructive evaluation (NDE), it is possible to optimize the methods of nondestructive inspection, and in other words, to improve the overall system performance, in terms of reliability and system implementation costs. In recent years, intelligent signal processing techniques have had a significant impact on the progress of nondestructive assessment. In other words, by automating the processing of nondestructive data and signals, and using the artificial intelligence methods, it is possible to optimize nondestructive inspection methods. Hence, improve overall system performance in terms of reliability and Implementation costs of the system. This chapter reviews the issues of intelligent processing of nondestructive testing (NDT) signals.2018-062018-06-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookapplication/pdfimage/pnghttps://hdl.handle.net/10216/114528eng10.1007/978-3-319-30050-4_53-1Masoud VejdannikAli SadrVictor Hugo C. de AlbuquerqueJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T15:53:51Zoai:repositorio-aberto.up.pt:10216/114528Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:34:50.333097Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Signal Processing for NDE
title Signal Processing for NDE
spellingShingle Signal Processing for NDE
Masoud Vejdannik
Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
title_short Signal Processing for NDE
title_full Signal Processing for NDE
title_fullStr Signal Processing for NDE
title_full_unstemmed Signal Processing for NDE
title_sort Signal Processing for NDE
author Masoud Vejdannik
author_facet Masoud Vejdannik
Ali Sadr
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
author_role author
author2 Ali Sadr
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
author2_role author
author
author
dc.contributor.author.fl_str_mv Masoud Vejdannik
Ali Sadr
Victor Hugo C. de Albuquerque
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
topic Ciências Tecnológicas, Ciências da engenharia e tecnologias
Technological sciences, Engineering and technology
description Nowadays, testing and evaluating of industrial equipment using nondestructive tests, is a fundamental step in the manufacturing process. The complexity and high costs of manufacturing industrial components, require examinations in some way about the quality and reliability of the specimens. However, it should be noted, that in order to accurately perform the nondestructive test, in addition to theoretical knowledge, it is also essential to have the experience and carefulness, which requires special courses and experience with theoretical education. Therefore, in the traditional methods, which are based on manual testing techniques and the test results depend on the operator, there is the possibility of an invalid inference from the test data. In other words, the accuracy of conclusion from the obtained data is dependent on the skill and experience of the operator. Thus, using the signal processing techniques for nondestructive evaluation (NDE), it is possible to optimize the methods of nondestructive inspection, and in other words, to improve the overall system performance, in terms of reliability and system implementation costs. In recent years, intelligent signal processing techniques have had a significant impact on the progress of nondestructive assessment. In other words, by automating the processing of nondestructive data and signals, and using the artificial intelligence methods, it is possible to optimize nondestructive inspection methods. Hence, improve overall system performance in terms of reliability and Implementation costs of the system. This chapter reviews the issues of intelligent processing of nondestructive testing (NDT) signals.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
2018-06-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/book
format book
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/114528
url https://hdl.handle.net/10216/114528
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1007/978-3-319-30050-4_53-1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
image/png
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136257460142080