LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042005000200003 |
Resumo: | LiMn2O4 is an attractive 4 V positive material in lithium rechargeable batteries owing to its favourable electrochemical characteristics besides its economic and environmental advantages. However, problems of limited cyclability, especially at elevated temperatures, have limited the utility and commercialization of this cathode material. Stabilization of the LiMn2O4 spinel structure has been sought to be realized by doping the spinel with suitable cations. In this paper, the results of an exploratory research on the capacity and cyclability of LiMn2O4 cathodes simultaneously doped with Cr3+ and Mg2+ are reported. LiMg y1Cr y2Mn2-y1-y2O4 spinels with y1 = 0.00, 0.05, 0.10, 0.20, 0.25 and 0.30 and y2 (0.3 - y1) were synthesized by a solid-state fusion method. While Mg2+ bestows a positive effect on cyclability, it leads to a considerable reduction in capacity due to the oxidation of Mn3+ to the inactive Mn4+ as a result of charge compensation. Cr3+ on the other hand, leads only to half as much reduction in capacity while according added stability to the structure. Any expectation of a synergistic effect by Cr3+ and Mg2+ ions was belied by these findings. |
id |
RCAP_c9015bd319228a25d066abce9f4d2301 |
---|---|
oai_identifier_str |
oai:scielo:S0872-19042005000200003 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium BatteriesmagnesiumchromiumLiMn2O4cyclic voltammetryimpedance measurementslithium battery cathodeLiMn2O4 is an attractive 4 V positive material in lithium rechargeable batteries owing to its favourable electrochemical characteristics besides its economic and environmental advantages. However, problems of limited cyclability, especially at elevated temperatures, have limited the utility and commercialization of this cathode material. Stabilization of the LiMn2O4 spinel structure has been sought to be realized by doping the spinel with suitable cations. In this paper, the results of an exploratory research on the capacity and cyclability of LiMn2O4 cathodes simultaneously doped with Cr3+ and Mg2+ are reported. LiMg y1Cr y2Mn2-y1-y2O4 spinels with y1 = 0.00, 0.05, 0.10, 0.20, 0.25 and 0.30 and y2 (0.3 - y1) were synthesized by a solid-state fusion method. While Mg2+ bestows a positive effect on cyclability, it leads to a considerable reduction in capacity due to the oxidation of Mn3+ to the inactive Mn4+ as a result of charge compensation. Cr3+ on the other hand, leads only to half as much reduction in capacity while according added stability to the structure. Any expectation of a synergistic effect by Cr3+ and Mg2+ ions was belied by these findings.Sociedade Portuguesa de Electroquímica2005-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articletext/htmlhttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042005000200003Portugaliae Electrochimica Acta v.23 n.2 2005reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAPenghttp://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042005000200003Kalaiselvi,N.Thirunakaran,R.Periasamy,P.Sakthivel,M.Muniyandi,N.info:eu-repo/semantics/openAccess2024-02-06T17:06:46Zoai:scielo:S0872-19042005000200003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:19:59.135580Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
title |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
spellingShingle |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries Kalaiselvi,N. magnesium chromium LiMn2O4 cyclic voltammetry impedance measurements lithium battery cathode |
title_short |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
title_full |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
title_fullStr |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
title_full_unstemmed |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
title_sort |
LiMg y1Cr y2Mn2-y1-y2O4 (0.0 £ y1 £ 0.30; y2 = 0.30 - y1) as a Cathode Active Material for Lithium Batteries |
author |
Kalaiselvi,N. |
author_facet |
Kalaiselvi,N. Thirunakaran,R. Periasamy,P. Sakthivel,M. Muniyandi,N. |
author_role |
author |
author2 |
Thirunakaran,R. Periasamy,P. Sakthivel,M. Muniyandi,N. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Kalaiselvi,N. Thirunakaran,R. Periasamy,P. Sakthivel,M. Muniyandi,N. |
dc.subject.por.fl_str_mv |
magnesium chromium LiMn2O4 cyclic voltammetry impedance measurements lithium battery cathode |
topic |
magnesium chromium LiMn2O4 cyclic voltammetry impedance measurements lithium battery cathode |
description |
LiMn2O4 is an attractive 4 V positive material in lithium rechargeable batteries owing to its favourable electrochemical characteristics besides its economic and environmental advantages. However, problems of limited cyclability, especially at elevated temperatures, have limited the utility and commercialization of this cathode material. Stabilization of the LiMn2O4 spinel structure has been sought to be realized by doping the spinel with suitable cations. In this paper, the results of an exploratory research on the capacity and cyclability of LiMn2O4 cathodes simultaneously doped with Cr3+ and Mg2+ are reported. LiMg y1Cr y2Mn2-y1-y2O4 spinels with y1 = 0.00, 0.05, 0.10, 0.20, 0.25 and 0.30 and y2 (0.3 - y1) were synthesized by a solid-state fusion method. While Mg2+ bestows a positive effect on cyclability, it leads to a considerable reduction in capacity due to the oxidation of Mn3+ to the inactive Mn4+ as a result of charge compensation. Cr3+ on the other hand, leads only to half as much reduction in capacity while according added stability to the structure. Any expectation of a synergistic effect by Cr3+ and Mg2+ ions was belied by these findings. |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005-01-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042005000200003 |
url |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042005000200003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://scielo.pt/scielo.php?script=sci_arttext&pid=S0872-19042005000200003 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Sociedade Portuguesa de Electroquímica |
publisher.none.fl_str_mv |
Sociedade Portuguesa de Electroquímica |
dc.source.none.fl_str_mv |
Portugaliae Electrochimica Acta v.23 n.2 2005 reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137289376366592 |