Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/150959 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
id |
RCAP_c9118b80002380390f8f8baaa128b76e |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/150959 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classificationCNNTransformerVision TransformerSwin Transformermultihead attentionremote sensingimage classificationDeep LearningDomínio/Área Científica::Ciências Sociais::Geografia Económica e SocialDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da InformaçãoDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesRemote sensing is regarded as a rich source of data that is still very valuable for mapping (classification) and monitoring of this information using various methodologies. Convolutional Neural Networks (CNNs) are frequently employed by researchers in this field as one of the key feature extraction approaches in application to satellite pictures and have achieved good performance and efficacy. Yet, they face some problems, including the overfitting problem and the need for large datasets and expensive computational resources. As a result, it would be a good idea to experiment with various Deep Learning methods, investigate them, and compare them to existing methods while taking into account all of the elements that can affect the processing. Transformers, particularly vision Transformers, have just been offered as novel Deep Learning approaches and have demonstrated good performance in a variety of domains. Hence, experimenting with these new models would be a realistic strategy in terms of learning how they behave when processing data and what value they can contribute to the picture classification area. In relation with this, the present work aims to analyze the performance of different DL methods in classifying different land cover/land use types depending on their properties and the effect of the revolution level on this. Experimental results conducted on two main datasets “EuroSAT” and “UC Merced” indicates that some CNNs, such as, “ResNET50” and “EfficientNET B0” perform well with different resolutions while for “VGG16” and the Vision Transformer, the need for a huge amount of data for the learning task is unavoidable.Meyer, HannaKnoth, ChristianTorres Sospedra, JoaquinRUNBelcaid, Mareyam2023-03-21T13:34:04Z2023-01-272023-01-27T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/150959TID:203253671enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:22Zoai:run.unl.pt:10362/150959Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:23.161970Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
title |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
spellingShingle |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification Belcaid, Mareyam CNN Transformer Vision Transformer Swin Transformer multihead attention remote sensing image classification Deep Learning Domínio/Área Científica::Ciências Sociais::Geografia Económica e Social Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
title_short |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
title_full |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
title_fullStr |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
title_full_unstemmed |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
title_sort |
Comparison of transformer-based and convolutional neural network-based (CNN) models for remote sensing image classification |
author |
Belcaid, Mareyam |
author_facet |
Belcaid, Mareyam |
author_role |
author |
dc.contributor.none.fl_str_mv |
Meyer, Hanna Knoth, Christian Torres Sospedra, Joaquin RUN |
dc.contributor.author.fl_str_mv |
Belcaid, Mareyam |
dc.subject.por.fl_str_mv |
CNN Transformer Vision Transformer Swin Transformer multihead attention remote sensing image classification Deep Learning Domínio/Área Científica::Ciências Sociais::Geografia Económica e Social Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
topic |
CNN Transformer Vision Transformer Swin Transformer multihead attention remote sensing image classification Deep Learning Domínio/Área Científica::Ciências Sociais::Geografia Económica e Social Domínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informação |
description |
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-21T13:34:04Z 2023-01-27 2023-01-27T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/150959 TID:203253671 |
url |
http://hdl.handle.net/10362/150959 |
identifier_str_mv |
TID:203253671 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138132965195776 |