Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis

Detalhes bibliográficos
Autor(a) principal: Charrua, Alberto Bento
Data de Publicação: 2021
Outros Autores: Padmanaban, Rajchandar, Cabral, Pedro, Romeiras, Maria M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.5/21333
Resumo: The Central Region of Mozambique (Sofala Province) bordering on the active cyclone area of the southwestern Indian Ocean has been particularly affected by climate hazards. The Cyclone Idai, which hit the region in March 2019 with strong winds causing extensive flooding and a massive loss of life, was the strongest recorded tropical cyclone in the Southern Hemisphere. The aim of this study was to use pre- and post-cyclone Idai Landsat satellite images to analyze temporal changes in Land Use and Land Cover (LULC) across the Sofala Province. Specifically, we aimed—(i) to quantify and map the changes in LULC between 2012 and 2019; (ii) to investigate the correlation between the distance to Idai’s trajectory and the degree of vegetation damage, and (iii) to determine the damage caused by Idai on different LULC.We used Landsat 7 and 8 images (with 30 m resolution) taken during the month of April for the 8-year period. The April Average Normalized Difference Vegetation Index (NDVI) over the aforementioned period (2012–2018, pre-cyclone) was compared with the values of April 2019 (post-cyclone). The results showed a decreasing trend of the productivity (NDVI 0.5 to 0.8) and an abrupt decrease after the cyclone. The most devastated land use classes were dense vegetation (decreased by 59%), followed by wetland vegetation (57%) and shrub land (56%). The least damaged areas were barren land (23%), barren vegetation (27%), and grassland and dambos (27%). The Northeastern, Central and Southern regions of Sofala were the most devastated areas. The Pearson Correlation Coefficient between the relative vegetation change activity after Idai (NDVI%) and the distance to Idai’s trajectory was 0.95 (R-square 0.91), suggesting a strong positive linear correlation. Our study also indicated that the LULC type (vegetation physiognomy) might have influenced the degree of LULC damage. This study provides new insights for the management and conservation of natural habitats threatened by climate hazards and human factors and might accelerate ongoing recovery processes in the Sofala Province
id RCAP_c94985f0c5ff78dafd0d46033e11cf67
oai_identifier_str oai:www.repository.utl.pt:10400.5/21333
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysiscyclone Idairemote sensingvegetation damageland use and land covervegetation indexThe Central Region of Mozambique (Sofala Province) bordering on the active cyclone area of the southwestern Indian Ocean has been particularly affected by climate hazards. The Cyclone Idai, which hit the region in March 2019 with strong winds causing extensive flooding and a massive loss of life, was the strongest recorded tropical cyclone in the Southern Hemisphere. The aim of this study was to use pre- and post-cyclone Idai Landsat satellite images to analyze temporal changes in Land Use and Land Cover (LULC) across the Sofala Province. Specifically, we aimed—(i) to quantify and map the changes in LULC between 2012 and 2019; (ii) to investigate the correlation between the distance to Idai’s trajectory and the degree of vegetation damage, and (iii) to determine the damage caused by Idai on different LULC.We used Landsat 7 and 8 images (with 30 m resolution) taken during the month of April for the 8-year period. The April Average Normalized Difference Vegetation Index (NDVI) over the aforementioned period (2012–2018, pre-cyclone) was compared with the values of April 2019 (post-cyclone). The results showed a decreasing trend of the productivity (NDVI 0.5 to 0.8) and an abrupt decrease after the cyclone. The most devastated land use classes were dense vegetation (decreased by 59%), followed by wetland vegetation (57%) and shrub land (56%). The least damaged areas were barren land (23%), barren vegetation (27%), and grassland and dambos (27%). The Northeastern, Central and Southern regions of Sofala were the most devastated areas. The Pearson Correlation Coefficient between the relative vegetation change activity after Idai (NDVI%) and the distance to Idai’s trajectory was 0.95 (R-square 0.91), suggesting a strong positive linear correlation. Our study also indicated that the LULC type (vegetation physiognomy) might have influenced the degree of LULC damage. This study provides new insights for the management and conservation of natural habitats threatened by climate hazards and human factors and might accelerate ongoing recovery processes in the Sofala ProvinceMDPIRepositório da Universidade de LisboaCharrua, Alberto BentoPadmanaban, RajchandarCabral, PedroRomeiras, Maria M.2021-05-24T13:32:16Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.5/21333engCharrua, A.B.; Padmanaban, R.; Cabral, P.; Bandeira, S.; Romeiras, M.M. Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sens. 2021, 13, 201https://doi.org/10.3390/ rs13020201info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-06T14:50:46Zoai:www.repository.utl.pt:10400.5/21333Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:05:56.334097Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
title Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
spellingShingle Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
Charrua, Alberto Bento
cyclone Idai
remote sensing
vegetation damage
land use and land cover
vegetation index
title_short Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
title_full Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
title_fullStr Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
title_full_unstemmed Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
title_sort Impacts of the tropical cyclone Idai in Mozambique: a multi-temporal landsat satellite imagery analysis
author Charrua, Alberto Bento
author_facet Charrua, Alberto Bento
Padmanaban, Rajchandar
Cabral, Pedro
Romeiras, Maria M.
author_role author
author2 Padmanaban, Rajchandar
Cabral, Pedro
Romeiras, Maria M.
author2_role author
author
author
dc.contributor.none.fl_str_mv Repositório da Universidade de Lisboa
dc.contributor.author.fl_str_mv Charrua, Alberto Bento
Padmanaban, Rajchandar
Cabral, Pedro
Romeiras, Maria M.
dc.subject.por.fl_str_mv cyclone Idai
remote sensing
vegetation damage
land use and land cover
vegetation index
topic cyclone Idai
remote sensing
vegetation damage
land use and land cover
vegetation index
description The Central Region of Mozambique (Sofala Province) bordering on the active cyclone area of the southwestern Indian Ocean has been particularly affected by climate hazards. The Cyclone Idai, which hit the region in March 2019 with strong winds causing extensive flooding and a massive loss of life, was the strongest recorded tropical cyclone in the Southern Hemisphere. The aim of this study was to use pre- and post-cyclone Idai Landsat satellite images to analyze temporal changes in Land Use and Land Cover (LULC) across the Sofala Province. Specifically, we aimed—(i) to quantify and map the changes in LULC between 2012 and 2019; (ii) to investigate the correlation between the distance to Idai’s trajectory and the degree of vegetation damage, and (iii) to determine the damage caused by Idai on different LULC.We used Landsat 7 and 8 images (with 30 m resolution) taken during the month of April for the 8-year period. The April Average Normalized Difference Vegetation Index (NDVI) over the aforementioned period (2012–2018, pre-cyclone) was compared with the values of April 2019 (post-cyclone). The results showed a decreasing trend of the productivity (NDVI 0.5 to 0.8) and an abrupt decrease after the cyclone. The most devastated land use classes were dense vegetation (decreased by 59%), followed by wetland vegetation (57%) and shrub land (56%). The least damaged areas were barren land (23%), barren vegetation (27%), and grassland and dambos (27%). The Northeastern, Central and Southern regions of Sofala were the most devastated areas. The Pearson Correlation Coefficient between the relative vegetation change activity after Idai (NDVI%) and the distance to Idai’s trajectory was 0.95 (R-square 0.91), suggesting a strong positive linear correlation. Our study also indicated that the LULC type (vegetation physiognomy) might have influenced the degree of LULC damage. This study provides new insights for the management and conservation of natural habitats threatened by climate hazards and human factors and might accelerate ongoing recovery processes in the Sofala Province
publishDate 2021
dc.date.none.fl_str_mv 2021-05-24T13:32:16Z
2021
2021-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.5/21333
url http://hdl.handle.net/10400.5/21333
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Charrua, A.B.; Padmanaban, R.; Cabral, P.; Bandeira, S.; Romeiras, M.M. Impacts of the Tropical Cyclone Idai in Mozambique: A Multi-Temporal Landsat Satellite Imagery Analysis. Remote Sens. 2021, 13, 201
https://doi.org/10.3390/ rs13020201
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131152039018496