Detection of abnormalities in ECG using Deep Learning

Detalhes bibliográficos
Autor(a) principal: Pestana, João Pedro de Lima
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/92881
Resumo: A significant part of healthcare is focused on the information that the physiological signals offer about the health state of an individual. The Electrocardiogram (ECG) cyclic behaviour gives insight on a subject’s emotional, behavioral and cardiovascular state. These signals often present abnormal events that affects their analysis. Two examples are the noise, that occurs during the acquisition, and symptomatic patterns, that are produced by pathologies. This thesis proposes a Deep Neural Networks framework that learns the normal behaviour of an ECG while detecting abnormal events, tested in two different settings: detection of different types of noise, and; symptomatic events caused by different pathologies. Two algorithms were developed for noise detection, using an autoencoder and Convolutional Neural Networks (CNN), reaching accuracies of 98,18% for the binary class model and 70,74% for the multi-class model, which is able to discern between base wandering, muscle artifact and electrode motion noise. As for the arrhythmia detection algorithm was developed using an autoencoder and Recurrent Neural Networks with Gated Recurrent Units (GRU) architecture. With an accuracy of 56,85% and an average sensitivity of 61.13%, compared to an average sensitivity of 75.22% for a 12 class model developed by Hannun et al. The model detects 7 classes: normal sinus rhythm, paced rhythm, ventricular bigeminy, sinus bradycardia, atrial fibrillation, atrial flutter and pre-excitation. It was concluded that the process of learning the machine learned features of the normal ECG signal, currently sacrifices the accuracy for higher generalization. It performs better at discriminating the presence of abnormal events in ECG than classifying different types of events. In the future, these algorithms could represent a huge contribution in signal acquisition for wearables and the study of pathologies visible in not only in ECG, but also EMG and respiratory signals, especially applied to active learning.
id RCAP_c9b6f21ef7184a45ca0e0fed353b7ec4
oai_identifier_str oai:run.unl.pt:10362/92881
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Detection of abnormalities in ECG using Deep LearningElectrocardiogramSignal ProcessingDeep LearningArtificial IntelligenceArrhythmia DetectionNoise DetectionDomínio/Área Científica::Engenharia e Tecnologia::Engenharia MédicaA significant part of healthcare is focused on the information that the physiological signals offer about the health state of an individual. The Electrocardiogram (ECG) cyclic behaviour gives insight on a subject’s emotional, behavioral and cardiovascular state. These signals often present abnormal events that affects their analysis. Two examples are the noise, that occurs during the acquisition, and symptomatic patterns, that are produced by pathologies. This thesis proposes a Deep Neural Networks framework that learns the normal behaviour of an ECG while detecting abnormal events, tested in two different settings: detection of different types of noise, and; symptomatic events caused by different pathologies. Two algorithms were developed for noise detection, using an autoencoder and Convolutional Neural Networks (CNN), reaching accuracies of 98,18% for the binary class model and 70,74% for the multi-class model, which is able to discern between base wandering, muscle artifact and electrode motion noise. As for the arrhythmia detection algorithm was developed using an autoencoder and Recurrent Neural Networks with Gated Recurrent Units (GRU) architecture. With an accuracy of 56,85% and an average sensitivity of 61.13%, compared to an average sensitivity of 75.22% for a 12 class model developed by Hannun et al. The model detects 7 classes: normal sinus rhythm, paced rhythm, ventricular bigeminy, sinus bradycardia, atrial fibrillation, atrial flutter and pre-excitation. It was concluded that the process of learning the machine learned features of the normal ECG signal, currently sacrifices the accuracy for higher generalization. It performs better at discriminating the presence of abnormal events in ECG than classifying different types of events. In the future, these algorithms could represent a huge contribution in signal acquisition for wearables and the study of pathologies visible in not only in ECG, but also EMG and respiratory signals, especially applied to active learning.Gamboa, HugoRUNPestana, João Pedro de Lima2020-02-17T15:04:23Z2019-1120192019-11-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/92881enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:41:26Zoai:run.unl.pt:10362/92881Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:37:37.655183Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Detection of abnormalities in ECG using Deep Learning
title Detection of abnormalities in ECG using Deep Learning
spellingShingle Detection of abnormalities in ECG using Deep Learning
Pestana, João Pedro de Lima
Electrocardiogram
Signal Processing
Deep Learning
Artificial Intelligence
Arrhythmia Detection
Noise Detection
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
title_short Detection of abnormalities in ECG using Deep Learning
title_full Detection of abnormalities in ECG using Deep Learning
title_fullStr Detection of abnormalities in ECG using Deep Learning
title_full_unstemmed Detection of abnormalities in ECG using Deep Learning
title_sort Detection of abnormalities in ECG using Deep Learning
author Pestana, João Pedro de Lima
author_facet Pestana, João Pedro de Lima
author_role author
dc.contributor.none.fl_str_mv Gamboa, Hugo
RUN
dc.contributor.author.fl_str_mv Pestana, João Pedro de Lima
dc.subject.por.fl_str_mv Electrocardiogram
Signal Processing
Deep Learning
Artificial Intelligence
Arrhythmia Detection
Noise Detection
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
topic Electrocardiogram
Signal Processing
Deep Learning
Artificial Intelligence
Arrhythmia Detection
Noise Detection
Domínio/Área Científica::Engenharia e Tecnologia::Engenharia Médica
description A significant part of healthcare is focused on the information that the physiological signals offer about the health state of an individual. The Electrocardiogram (ECG) cyclic behaviour gives insight on a subject’s emotional, behavioral and cardiovascular state. These signals often present abnormal events that affects their analysis. Two examples are the noise, that occurs during the acquisition, and symptomatic patterns, that are produced by pathologies. This thesis proposes a Deep Neural Networks framework that learns the normal behaviour of an ECG while detecting abnormal events, tested in two different settings: detection of different types of noise, and; symptomatic events caused by different pathologies. Two algorithms were developed for noise detection, using an autoencoder and Convolutional Neural Networks (CNN), reaching accuracies of 98,18% for the binary class model and 70,74% for the multi-class model, which is able to discern between base wandering, muscle artifact and electrode motion noise. As for the arrhythmia detection algorithm was developed using an autoencoder and Recurrent Neural Networks with Gated Recurrent Units (GRU) architecture. With an accuracy of 56,85% and an average sensitivity of 61.13%, compared to an average sensitivity of 75.22% for a 12 class model developed by Hannun et al. The model detects 7 classes: normal sinus rhythm, paced rhythm, ventricular bigeminy, sinus bradycardia, atrial fibrillation, atrial flutter and pre-excitation. It was concluded that the process of learning the machine learned features of the normal ECG signal, currently sacrifices the accuracy for higher generalization. It performs better at discriminating the presence of abnormal events in ECG than classifying different types of events. In the future, these algorithms could represent a huge contribution in signal acquisition for wearables and the study of pathologies visible in not only in ECG, but also EMG and respiratory signals, especially applied to active learning.
publishDate 2019
dc.date.none.fl_str_mv 2019-11
2019
2019-11-01T00:00:00Z
2020-02-17T15:04:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/92881
url http://hdl.handle.net/10362/92881
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137992688795648