Numerical modelling of irregular wave propagation in the nearshore region

Detalhes bibliográficos
Autor(a) principal: Oliveira, F. S. B. F.
Data de Publicação: 1997
Idioma: por
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://repositorio.lnec.pt:8080/jspui/handle/123456789/8745
Resumo: The thesis deals with the numerical modelling of random wave propagation in the nearshore region. The mathematical modelling is based on the mild - slope equation. The mild - slope equation has been considered in a linear elliptic form in order to take into account wave refraction, diffraction, and reflections, and therefore to allow for the applicability of the model without constraints even to areas like harbours where reflections play an important role. Owing to the fact that we are dealing with a boundary value problem, the mathematical methods for solving the linear system of equations generated after discretising the governing equation and the boundary conditions imposed are fundamental to developing an efficient numerical model. A range of mathematical methods for solving the linear elliptic form of the mild-slope equation as well as a range of appropriate radiation boundary conditions are analysed, implemented and compared. Comparisons with available results, experimental and numerical, for different cases of study, validate the model for monochromatic waves. To overcome the difficulty of applying the linear elliptic model over large areas, a multigrid technique was deployed in a numerical model of a non-linear transformed form of the mild-slope equation in order to accelerate convergence. This technique was applied to a range of iterative solvers and satisfactory results were obtained. A numerical model of a hyperbolic form of the mild-slope equation, an initial value problem, was also developed and extended in order to test a range of radiation boundary conditions. Results show that "sponge layers" provide the best means of dealing with radiation type boundary conditions. The elliptic model was then further developed by extending it to random waves using the concept of superposition of spectral components. The importance of frequency and directional spreading was investigated. Based on the energy balance equation the phenomenon of breaking of irregular waves in the surf zone was incorporated, using two different approaches, in the model which was applied to cases that had been experimentally studied before. The results from this part of the work are unique and demonstrate the practical usefulness of the model.
id RCAP_c9bf7c1e2ac079ed4bb97648624ea31b
oai_identifier_str oai:localhost:123456789/8745
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Numerical modelling of irregular wave propagation in the nearshore regionThe thesis deals with the numerical modelling of random wave propagation in the nearshore region. The mathematical modelling is based on the mild - slope equation. The mild - slope equation has been considered in a linear elliptic form in order to take into account wave refraction, diffraction, and reflections, and therefore to allow for the applicability of the model without constraints even to areas like harbours where reflections play an important role. Owing to the fact that we are dealing with a boundary value problem, the mathematical methods for solving the linear system of equations generated after discretising the governing equation and the boundary conditions imposed are fundamental to developing an efficient numerical model. A range of mathematical methods for solving the linear elliptic form of the mild-slope equation as well as a range of appropriate radiation boundary conditions are analysed, implemented and compared. Comparisons with available results, experimental and numerical, for different cases of study, validate the model for monochromatic waves. To overcome the difficulty of applying the linear elliptic model over large areas, a multigrid technique was deployed in a numerical model of a non-linear transformed form of the mild-slope equation in order to accelerate convergence. This technique was applied to a range of iterative solvers and satisfactory results were obtained. A numerical model of a hyperbolic form of the mild-slope equation, an initial value problem, was also developed and extended in order to test a range of radiation boundary conditions. Results show that "sponge layers" provide the best means of dealing with radiation type boundary conditions. The elliptic model was then further developed by extending it to random waves using the concept of superposition of spectral components. The importance of frequency and directional spreading was investigated. Based on the energy balance equation the phenomenon of breaking of irregular waves in the surf zone was incorporated, using two different approaches, in the model which was applied to cases that had been experimentally studied before. The results from this part of the work are unique and demonstrate the practical usefulness of the model.******2007-07-17T14:52:46Z2010-04-26T08:35:36Z2014-10-20T12:42:01Z1997-01-01T00:00:00Z1997doctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://repositorio.lnec.pt:8080/jspui/handle/123456789/8745porOliveira, F. S. B. F.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-09-28T02:59:13Zoai:localhost:123456789/8745Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-09-28T02:59:13Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Numerical modelling of irregular wave propagation in the nearshore region
title Numerical modelling of irregular wave propagation in the nearshore region
spellingShingle Numerical modelling of irregular wave propagation in the nearshore region
Oliveira, F. S. B. F.
title_short Numerical modelling of irregular wave propagation in the nearshore region
title_full Numerical modelling of irregular wave propagation in the nearshore region
title_fullStr Numerical modelling of irregular wave propagation in the nearshore region
title_full_unstemmed Numerical modelling of irregular wave propagation in the nearshore region
title_sort Numerical modelling of irregular wave propagation in the nearshore region
author Oliveira, F. S. B. F.
author_facet Oliveira, F. S. B. F.
author_role author
dc.contributor.author.fl_str_mv Oliveira, F. S. B. F.
description The thesis deals with the numerical modelling of random wave propagation in the nearshore region. The mathematical modelling is based on the mild - slope equation. The mild - slope equation has been considered in a linear elliptic form in order to take into account wave refraction, diffraction, and reflections, and therefore to allow for the applicability of the model without constraints even to areas like harbours where reflections play an important role. Owing to the fact that we are dealing with a boundary value problem, the mathematical methods for solving the linear system of equations generated after discretising the governing equation and the boundary conditions imposed are fundamental to developing an efficient numerical model. A range of mathematical methods for solving the linear elliptic form of the mild-slope equation as well as a range of appropriate radiation boundary conditions are analysed, implemented and compared. Comparisons with available results, experimental and numerical, for different cases of study, validate the model for monochromatic waves. To overcome the difficulty of applying the linear elliptic model over large areas, a multigrid technique was deployed in a numerical model of a non-linear transformed form of the mild-slope equation in order to accelerate convergence. This technique was applied to a range of iterative solvers and satisfactory results were obtained. A numerical model of a hyperbolic form of the mild-slope equation, an initial value problem, was also developed and extended in order to test a range of radiation boundary conditions. Results show that "sponge layers" provide the best means of dealing with radiation type boundary conditions. The elliptic model was then further developed by extending it to random waves using the concept of superposition of spectral components. The importance of frequency and directional spreading was investigated. Based on the energy balance equation the phenomenon of breaking of irregular waves in the surf zone was incorporated, using two different approaches, in the model which was applied to cases that had been experimentally studied before. The results from this part of the work are unique and demonstrate the practical usefulness of the model.
publishDate 1997
dc.date.none.fl_str_mv 1997-01-01T00:00:00Z
1997
2007-07-17T14:52:46Z
2010-04-26T08:35:36Z
2014-10-20T12:42:01Z
dc.type.driver.fl_str_mv doctoral thesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.lnec.pt:8080/jspui/handle/123456789/8745
url http://repositorio.lnec.pt:8080/jspui/handle/123456789/8745
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv ******
publisher.none.fl_str_mv ******
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817548498398085120