Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.26/36410 |
Resumo: | Atypical body temperature values can be an indication of abnormal physiological processes associated with several health conditions. Infrared thermal (IRT) imaging is an innocuous imaging modality capable of capturing the natural thermal radiation emitted by the skin surface, which is connected to physiology-related pathological states. The implementation of artificial intelligence (AI) methods for interpretation of thermal data can be an interesting solution to supply a second opinion to physicians in a diagnostic/therapeutic assessment scenario. The aim of this work was to perform a systematic review and meta-analysis concerning different biomedical thermal applications in conjunction with machine learning strategies. The bibliographic search yielded 68 records for a qualitative synthesis and 34 for quantitative analysis. The results show potential for the implementation of IRT imaging with AI, but more work is needed to retrieve significant features and improve classification metrics. |
id |
RCAP_c9fff8d31af24ebf3e71e02217febcc9 |
---|---|
oai_identifier_str |
oai:comum.rcaap.pt:10400.26/36410 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermographybiomedicalclassificationinfrared thermal imagingmachine learningskin cancerthermographyAtypical body temperature values can be an indication of abnormal physiological processes associated with several health conditions. Infrared thermal (IRT) imaging is an innocuous imaging modality capable of capturing the natural thermal radiation emitted by the skin surface, which is connected to physiology-related pathological states. The implementation of artificial intelligence (AI) methods for interpretation of thermal data can be an interesting solution to supply a second opinion to physicians in a diagnostic/therapeutic assessment scenario. The aim of this work was to perform a systematic review and meta-analysis concerning different biomedical thermal applications in conjunction with machine learning strategies. The bibliographic search yielded 68 records for a qualitative synthesis and 34 for quantitative analysis. The results show potential for the implementation of IRT imaging with AI, but more work is needed to retrieve significant features and improve classification metrics.Repositório ComumRicardo Vardasca, PhD, ASIS, FRPS2021-05-06T11:44:22Z20212021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.26/36410eng10.3390/app11020842info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-28T12:16:22Zoai:comum.rcaap.pt:10400.26/36410Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:17:57.923477Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
title |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
spellingShingle |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography Ricardo Vardasca, PhD, ASIS, FRPS biomedical classification infrared thermal imaging machine learning skin cancer thermography |
title_short |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
title_full |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
title_fullStr |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
title_full_unstemmed |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
title_sort |
Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography |
author |
Ricardo Vardasca, PhD, ASIS, FRPS |
author_facet |
Ricardo Vardasca, PhD, ASIS, FRPS |
author_role |
author |
dc.contributor.none.fl_str_mv |
Repositório Comum |
dc.contributor.author.fl_str_mv |
Ricardo Vardasca, PhD, ASIS, FRPS |
dc.subject.por.fl_str_mv |
biomedical classification infrared thermal imaging machine learning skin cancer thermography |
topic |
biomedical classification infrared thermal imaging machine learning skin cancer thermography |
description |
Atypical body temperature values can be an indication of abnormal physiological processes associated with several health conditions. Infrared thermal (IRT) imaging is an innocuous imaging modality capable of capturing the natural thermal radiation emitted by the skin surface, which is connected to physiology-related pathological states. The implementation of artificial intelligence (AI) methods for interpretation of thermal data can be an interesting solution to supply a second opinion to physicians in a diagnostic/therapeutic assessment scenario. The aim of this work was to perform a systematic review and meta-analysis concerning different biomedical thermal applications in conjunction with machine learning strategies. The bibliographic search yielded 68 records for a qualitative synthesis and 34 for quantitative analysis. The results show potential for the implementation of IRT imaging with AI, but more work is needed to retrieve significant features and improve classification metrics. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-06T11:44:22Z 2021 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.26/36410 |
url |
http://hdl.handle.net/10400.26/36410 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.3390/app11020842 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799130041033949184 |