Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/150967 |
Resumo: | Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
id |
RCAP_ca080c5f085858b9ad50ddff868e5c39 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/150967 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learningSoil MoisturePolarimetryEucalyptusL-Band SARFeature SelectionMachine LearningDissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesSoil moisture is a critical ecological parameter because it is a primary input for all processes that involve the complex interaction between land surface and the atmosphere. Remote sensing, especially using microwaves, has shown great promise in measuring soil moisturewith several operating satellites focused on its continuous estimation and monitoring on a global scale. Portugal is predominantly characterized by Mediterranean and semi-arid climates that feature low and sporadic precipitation. Over 10% of Portugal’s land area has been planted with Eucalyptus globulus- a non-native, fast-growing tree primarily planted for industrial use. Some studies have demonstrated that eucalyptus plantations adversely affect water availability, but overall results have been inconclusive as there are numerous other confounding variables. The goals of this study were to determine, using fully polarimetric L-band SAR and machine learning, if soil moisture could be accurately predicted in eucalyptus forests, and if there is a significant difference in soil moisture inside eucalyptus forests relative to other forests. Vegetated surfaces complicate the estimation of soil moisture because their structure and water content contribute significantly to backscatter of the radar signal. Thus, four polarimetric decompositions were compared to separate vegetative versus surface backscatter. The inputs from those decompositions, as well as several additional radar indices and polarizations from the microwave images, were used as feature inputs into two different machine learning models. After a feature selection process, the soil moisture estimations were retrieved and compared using cross-validation. The best overall soil moisture retrieval for Eucalyptus forests came from Random Forest with a RMSE of 0.021, a MAE of 0.017, and a MBE of 0.001. Through a statistical t-test, predicted soil moisture values in eucalyptus forests did not differ significantly as compared to other forest types in the study area.Silva, Joel Dinis Baptista Ferreira daCosta, Hugo Alexandre Gomes daGranell-Canut, CarlosRUNErickson, Daniel Thomas2023-03-21T18:28:54Z2023-03-012023-03-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/150967TID:203254430enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:33:24Zoai:run.unl.pt:10362/150967Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:54:23.530777Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
title |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
spellingShingle |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning Erickson, Daniel Thomas Soil Moisture Polarimetry Eucalyptus L-Band SAR Feature Selection Machine Learning |
title_short |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
title_full |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
title_fullStr |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
title_full_unstemmed |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
title_sort |
Soil moisture estimation of eucalyptus forests in Portugal with L-band SAR using polarimetric - Decompositions and machine learning |
author |
Erickson, Daniel Thomas |
author_facet |
Erickson, Daniel Thomas |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silva, Joel Dinis Baptista Ferreira da Costa, Hugo Alexandre Gomes da Granell-Canut, Carlos RUN |
dc.contributor.author.fl_str_mv |
Erickson, Daniel Thomas |
dc.subject.por.fl_str_mv |
Soil Moisture Polarimetry Eucalyptus L-Band SAR Feature Selection Machine Learning |
topic |
Soil Moisture Polarimetry Eucalyptus L-Band SAR Feature Selection Machine Learning |
description |
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-21T18:28:54Z 2023-03-01 2023-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/150967 TID:203254430 |
url |
http://hdl.handle.net/10362/150967 |
identifier_str_mv |
TID:203254430 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138132978827264 |