Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/29413 |
Resumo: | The aim of this thesis is to investigate the challenges and opportunities associated with the implementation of big data in small and medium-sized enterprises. The main findings of this study, based on a bibliometric analysis using Elsevier Scopus as a search engine and Vos viewer to analyze the results, demonstrates that big data analytics enables SMEs to improve financial performance and operational efficiency, become more innovative and able to make more informed decisions. Thus, enabling SMEs to achieve stable growth and gain competitiveness in the market. This study results from the synthesis of existing literature, which provides useful information and practical recommendations for SMEs, policy makers and researchers. The results help to understand the decisive factors of big data adoption in SMEs and paves the way for future research in this area. |
id |
RCAP_ca1d5268723b8affe922b16b0ed6c3fd |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/29413 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysisBig dataPME Pequenas e Médias Empresas -- SME Small and Medium EnterprisesBibliometria -- BibliometricsDesempenho organizacional -- Organizational performanceThe aim of this thesis is to investigate the challenges and opportunities associated with the implementation of big data in small and medium-sized enterprises. The main findings of this study, based on a bibliometric analysis using Elsevier Scopus as a search engine and Vos viewer to analyze the results, demonstrates that big data analytics enables SMEs to improve financial performance and operational efficiency, become more innovative and able to make more informed decisions. Thus, enabling SMEs to achieve stable growth and gain competitiveness in the market. This study results from the synthesis of existing literature, which provides useful information and practical recommendations for SMEs, policy makers and researchers. The results help to understand the decisive factors of big data adoption in SMEs and paves the way for future research in this area.O objetivo desta tese é investigar os desafios e as oportunidades associados à implementação de big data nas pequenas e médias empresas. As principais conclusões deste estudo, baseadas numa análise bibliométrica, que utiliza o Elsevier Scopus como motor de pesquisa e o Vos viewer para analisar os resultados, demonstram que o big data analytics permite às PMEs melhorar o desempenho financeiro e a eficiência operacional, tornar-se mais inovadoras e capazes de tomar decisões mais informadas. Capacitando assim as PMEs de alcançar um crescimento estável e ganhar competitividade no mercado. Este estudo resulta da síntese da literatura existente, que fornece informações úteis e recomendações práticas para as PMEs, os decisores políticos e os investigadores. Os resultados ajudam a compreender os fatores decisivos da adoção de big data nas PMEs e prepara o caminho para futuras pesquisas nesta área.2023-10-11T09:06:18Z2023-07-26T00:00:00Z2023-07-262023-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29413TID:203360680engBernardino, Maria Francisca Silva Carvalhoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:31:01Zoai:repositorio.iscte-iul.pt:10071/29413Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:13:56.140366Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
title |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
spellingShingle |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis Bernardino, Maria Francisca Silva Carvalho Big data PME Pequenas e Médias Empresas -- SME Small and Medium Enterprises Bibliometria -- Bibliometrics Desempenho organizacional -- Organizational performance |
title_short |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
title_full |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
title_fullStr |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
title_full_unstemmed |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
title_sort |
Exploring the challenges and opportunities of big data in SMEs: A bibliometric analysis |
author |
Bernardino, Maria Francisca Silva Carvalho |
author_facet |
Bernardino, Maria Francisca Silva Carvalho |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bernardino, Maria Francisca Silva Carvalho |
dc.subject.por.fl_str_mv |
Big data PME Pequenas e Médias Empresas -- SME Small and Medium Enterprises Bibliometria -- Bibliometrics Desempenho organizacional -- Organizational performance |
topic |
Big data PME Pequenas e Médias Empresas -- SME Small and Medium Enterprises Bibliometria -- Bibliometrics Desempenho organizacional -- Organizational performance |
description |
The aim of this thesis is to investigate the challenges and opportunities associated with the implementation of big data in small and medium-sized enterprises. The main findings of this study, based on a bibliometric analysis using Elsevier Scopus as a search engine and Vos viewer to analyze the results, demonstrates that big data analytics enables SMEs to improve financial performance and operational efficiency, become more innovative and able to make more informed decisions. Thus, enabling SMEs to achieve stable growth and gain competitiveness in the market. This study results from the synthesis of existing literature, which provides useful information and practical recommendations for SMEs, policy makers and researchers. The results help to understand the decisive factors of big data adoption in SMEs and paves the way for future research in this area. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-10-11T09:06:18Z 2023-07-26T00:00:00Z 2023-07-26 2023-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/29413 TID:203360680 |
url |
http://hdl.handle.net/10071/29413 |
identifier_str_mv |
TID:203360680 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134695735164928 |