Positive-definiteness and integral representations for special functions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.21/12608 |
Resumo: | It is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier-Laplace transform of a unique exponentially finite measure on R. In this paper we apply this complex integral representation to specific families of special functions, including the Gamma, zeta and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the zeta function this process leads to a new proof of an integral representation on the critical strip. |
id |
RCAP_ca41b718e643c112c2f27ced147df266 |
---|---|
oai_identifier_str |
oai:repositorio.ipl.pt:10400.21/12608 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Positive-definiteness and integral representations for special functionsPositive definite functionsFourier-Laplace transformCharacteristic functionsHolomorphyGamma functionZeta functionExponentially convex functionsIt is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier-Laplace transform of a unique exponentially finite measure on R. In this paper we apply this complex integral representation to specific families of special functions, including the Gamma, zeta and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the zeta function this process leads to a new proof of an integral representation on the critical strip.SpringerRCIPLBuescu, JorgePaixão, António2021-01-14T12:45:42Z2020-082020-08-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.21/12608engBUESCU, J.; PAIXÃO, António Carlos – Positive-definiteness and integral representations for special functions. Positivity. ISSN 1385-1292. Vol. 25, N.º 2 (2020), pp. 731-7501385-129210.1007/s11117-020-00784-4metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-08-03T10:05:51Zoai:repositorio.ipl.pt:10400.21/12608Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:20:39.862506Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Positive-definiteness and integral representations for special functions |
title |
Positive-definiteness and integral representations for special functions |
spellingShingle |
Positive-definiteness and integral representations for special functions Buescu, Jorge Positive definite functions Fourier-Laplace transform Characteristic functions Holomorphy Gamma function Zeta function Exponentially convex functions |
title_short |
Positive-definiteness and integral representations for special functions |
title_full |
Positive-definiteness and integral representations for special functions |
title_fullStr |
Positive-definiteness and integral representations for special functions |
title_full_unstemmed |
Positive-definiteness and integral representations for special functions |
title_sort |
Positive-definiteness and integral representations for special functions |
author |
Buescu, Jorge |
author_facet |
Buescu, Jorge Paixão, António |
author_role |
author |
author2 |
Paixão, António |
author2_role |
author |
dc.contributor.none.fl_str_mv |
RCIPL |
dc.contributor.author.fl_str_mv |
Buescu, Jorge Paixão, António |
dc.subject.por.fl_str_mv |
Positive definite functions Fourier-Laplace transform Characteristic functions Holomorphy Gamma function Zeta function Exponentially convex functions |
topic |
Positive definite functions Fourier-Laplace transform Characteristic functions Holomorphy Gamma function Zeta function Exponentially convex functions |
description |
It is known that a holomorphic positive definite function f defined on a horizontal strip of the complex plane may be characterized as the Fourier-Laplace transform of a unique exponentially finite measure on R. In this paper we apply this complex integral representation to specific families of special functions, including the Gamma, zeta and Bessel functions, and construct explicitly the corresponding measures, thus providing new insight into the nature of complex positive and co-positive definite functions. In the case of the zeta function this process leads to a new proof of an integral representation on the critical strip. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 2020-08-01T00:00:00Z 2021-01-14T12:45:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.21/12608 |
url |
http://hdl.handle.net/10400.21/12608 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
BUESCU, J.; PAIXÃO, António Carlos – Positive-definiteness and integral representations for special functions. Positivity. ISSN 1385-1292. Vol. 25, N.º 2 (2020), pp. 731-750 1385-1292 10.1007/s11117-020-00784-4 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133476512858112 |